RISCLESS: A Reinforcement Learning Strategy to Guarantee SLA on Cloud Ephemeral and Stable Resources

SidAhmed Yalles, Mohamed Handaoui, Jean-Emile Dartois, Olivier Barais, Laurent d'Orazio, Jalil Boukhobza
{"title":"RISCLESS: A Reinforcement Learning Strategy to Guarantee SLA on Cloud Ephemeral and Stable Resources","authors":"SidAhmed Yalles, Mohamed Handaoui, Jean-Emile Dartois, Olivier Barais, Laurent d'Orazio, Jalil Boukhobza","doi":"10.1109/pdp55904.2022.00021","DOIUrl":null,"url":null,"abstract":"In this paper, we propose RISCLESS, a Reinforcement Learning strategy to exploit unused Cloud resources. Our approach consists in using a small proportion of stable on-demand resources alongside the ephemeral ones in order to guarantee customers SLA and reduce the overall costs. The approach decides when and how much stable resources to allocate in order to fulfill customers’ demands. RISCLESS improved the Cloud Providers (CPs)’ profits by an average of 15.9% compared to past strategies. It also reduced the SLA violation time by 36.7% while increasing the amount of used ephemeral resources by 19.5%.","PeriodicalId":210759,"journal":{"name":"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/pdp55904.2022.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose RISCLESS, a Reinforcement Learning strategy to exploit unused Cloud resources. Our approach consists in using a small proportion of stable on-demand resources alongside the ephemeral ones in order to guarantee customers SLA and reduce the overall costs. The approach decides when and how much stable resources to allocate in order to fulfill customers’ demands. RISCLESS improved the Cloud Providers (CPs)’ profits by an average of 15.9% compared to past strategies. It also reduced the SLA violation time by 36.7% while increasing the amount of used ephemeral resources by 19.5%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
riseless:一种强化学习策略以保证云上短暂和稳定资源的SLA
在本文中,我们提出了risless,一种利用未使用的云资源的强化学习策略。我们的方法是使用一小部分稳定的按需资源和临时资源,以保证客户的SLA并降低总体成本。该方法决定何时以及分配多少稳定资源以满足客户需求。与过去的策略相比,risless使云提供商(CPs)的利润平均提高了15.9%。它还减少了36.7%的SLA违规时间,同时增加了19.5%的临时资源使用量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Some Experiments on High Performance Anomaly Detection Advancing Database System Operators with Near-Data Processing A Parallel Approximation Algorithm for the Steiner Forest Problem NoaSci: A Numerical Object Array Library for I/O of Scientific Applications on Object Storage Load Balancing of the Parallel Execution of Two Dimensional Partitioned Cellular Automata
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1