A. Tritsarolis, Y. Kontoulis, N. Pelekis, Y. Theodoridis
{"title":"MaSEC: Discovering Anchorages and Co-movement Patterns on Streaming Vessel Trajectories","authors":"A. Tritsarolis, Y. Kontoulis, N. Pelekis, Y. Theodoridis","doi":"10.1145/3469830.3470909","DOIUrl":null,"url":null,"abstract":"The massive-scale data generation of positioning (tracking) messages, collected by various surveillance means, has posed new challenges in the field of mobility data analytics in terms of extracting valuable knowledge out of this data. One of these challenges is online cluster analysis, where the goal is to unveil hidden patterns of collective behaviour from streaming trajectories, such as co-movement and co-stationary (aka anchorage) patterns. Towards this direction, in this paper, we demonstrate MaSEC (Moving and Stationary Evolving Clusters), a system that discovers valuable behavioural patterns as above. In particular, our system provides a unified solution that discovers both moving and stationary evolving clusters on streaming vessel position data in an online mode. The functionality of our system is evaluated over two real-world datasets from the maritime domain.","PeriodicalId":206910,"journal":{"name":"17th International Symposium on Spatial and Temporal Databases","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th International Symposium on Spatial and Temporal Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469830.3470909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The massive-scale data generation of positioning (tracking) messages, collected by various surveillance means, has posed new challenges in the field of mobility data analytics in terms of extracting valuable knowledge out of this data. One of these challenges is online cluster analysis, where the goal is to unveil hidden patterns of collective behaviour from streaming trajectories, such as co-movement and co-stationary (aka anchorage) patterns. Towards this direction, in this paper, we demonstrate MaSEC (Moving and Stationary Evolving Clusters), a system that discovers valuable behavioural patterns as above. In particular, our system provides a unified solution that discovers both moving and stationary evolving clusters on streaming vessel position data in an online mode. The functionality of our system is evaluated over two real-world datasets from the maritime domain.