Model-based target classification using spatial and temporal features of metal detector response

D. Ambruš, D. Vasić, V. Bilas
{"title":"Model-based target classification using spatial and temporal features of metal detector response","authors":"D. Ambruš, D. Vasić, V. Bilas","doi":"10.1109/SAS.2015.7133622","DOIUrl":null,"url":null,"abstract":"The paper presents a novel model-based algorithm for classifying buried metallic targets using spatial and temporal response properties of a pulse induction metal detector mounted on a mobile robot for autonomous landmine detection. In the proposed approach, we firstly derive a simplified analytical model for spatial distribution of the primary magnetic field that corresponds to transmitter/receiver coil geometry of a given metal detector. The sensing head model is then coupled to a metallic target analytical dipole model whose parameters are the magnetic polarizability tensor and the target location. Finally, the forward sensor/target model is fitted to sensor data obtained by spatially mapping the suspected target area using a mobile robot. Inverted magnetic polarizability tensors corresponding to sensor data acquired at different time instances (gates) are used for target characterization and classification. The algorithm is experimentally evaluated on a dataset collected from a test site containing surrogate mines (metallic spheres) and clutter targets.","PeriodicalId":384041,"journal":{"name":"2015 IEEE Sensors Applications Symposium (SAS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS.2015.7133622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The paper presents a novel model-based algorithm for classifying buried metallic targets using spatial and temporal response properties of a pulse induction metal detector mounted on a mobile robot for autonomous landmine detection. In the proposed approach, we firstly derive a simplified analytical model for spatial distribution of the primary magnetic field that corresponds to transmitter/receiver coil geometry of a given metal detector. The sensing head model is then coupled to a metallic target analytical dipole model whose parameters are the magnetic polarizability tensor and the target location. Finally, the forward sensor/target model is fitted to sensor data obtained by spatially mapping the suspected target area using a mobile robot. Inverted magnetic polarizability tensors corresponding to sensor data acquired at different time instances (gates) are used for target characterization and classification. The algorithm is experimentally evaluated on a dataset collected from a test site containing surrogate mines (metallic spheres) and clutter targets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模型的金属探测器响应时空特征目标分类
利用安装在移动机器人上的脉冲感应金属探测器的时空响应特性,提出了一种基于模型的地埋金属目标分类算法。在本文提出的方法中,我们首先推导了一个简化的解析模型,该模型对应于给定金属探测器的发射/接收线圈的几何形状。然后将传感头模型与金属目标解析偶极子模型耦合,该模型的参数为磁极化张量和目标位置。最后,将前向传感器/目标模型拟合到利用移动机器人对疑似目标区域进行空间映射得到的传感器数据中。在不同时间点(门)采集的传感器数据对应的反向磁极化张量用于目标表征和分类。该算法在包含替代地雷(金属球)和杂波目标的试验场收集的数据集上进行了实验评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microimmune algorithm for sensor network localization Empirical evaluation of OI-MAC: Direct interconnection between wireless sensor networks for collaborative monitoring DiverNet — A network of inertial sensors for real time diver visualization Sensor fusion for intrusion detection under false alarm constraints Fault tolerant and scalable IoT-based architecture for health monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1