Automated Extraction of Fine-Grained Standardized Product Information from Unstructured Multilingual Web Data

Alexander Flick, Sebastian Jäger, Ivana Trajanovska, F. Biessmann
{"title":"Automated Extraction of Fine-Grained Standardized Product Information from Unstructured Multilingual Web Data","authors":"Alexander Flick, Sebastian Jäger, Ivana Trajanovska, F. Biessmann","doi":"10.48550/arXiv.2302.12139","DOIUrl":null,"url":null,"abstract":"Extracting structured information from unstructured data is one of the key challenges in modern information retrieval applications, including e-commerce. Here, we demonstrate how recent advances in machine learning, combined with a recently published multilingual data set with standardized fine-grained product category information, enable robust product attribute extraction in challenging transfer learning settings. Our models can reliably predict product attributes across online shops, languages, or both. Furthermore, we show that our models can be used to match product taxonomies between online retailers.","PeriodicalId":126309,"journal":{"name":"European Conference on Information Retrieval","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Conference on Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.12139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Extracting structured information from unstructured data is one of the key challenges in modern information retrieval applications, including e-commerce. Here, we demonstrate how recent advances in machine learning, combined with a recently published multilingual data set with standardized fine-grained product category information, enable robust product attribute extraction in challenging transfer learning settings. Our models can reliably predict product attributes across online shops, languages, or both. Furthermore, we show that our models can be used to match product taxonomies between online retailers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从非结构化多语言Web数据中自动提取细粒度标准化产品信息
从非结构化数据中提取结构化信息是现代信息检索应用(包括电子商务)中的关键挑战之一。在这里,我们展示了机器学习的最新进展,结合最近发布的具有标准化细粒度产品类别信息的多语言数据集,如何在具有挑战性的迁移学习设置中实现健壮的产品属性提取。我们的模型可以可靠地预测在线商店、语言或两者之间的产品属性。此外,我们证明了我们的模型可以用于匹配在线零售商之间的产品分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experiments in News Bias Detection with Pre-trained Neural Transformers Is Interpretable Machine Learning Effective at Feature Selection for Neural Learning-to-Rank? Two-Step SPLADE: Simple, Efficient and Effective Approximation of SPLADE Exploring the Nexus Between Retrievability and Query Generation Strategies Countering Mainstream Bias via End-to-End Adaptive Local Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1