Machine-learning based Blind Visual Quality Assessment with Content-aware Data Partitioning

A. Gavrovska, G. Zajic, M. Milivojević, I. Reljin
{"title":"Machine-learning based Blind Visual Quality Assessment with Content-aware Data Partitioning","authors":"A. Gavrovska, G. Zajic, M. Milivojević, I. Reljin","doi":"10.1109/NEUREL.2018.8587018","DOIUrl":null,"url":null,"abstract":"Over the years different machine-learning based image quality assessment models have been proposed. In this paper, we analyze data partitioning. Since statistical data partitioning may affect the results due to the number of iterations, we analyze the effect of content-aware partitioning. The results are analyzed for different partitioning methods and models using publicly available dataset and difference mean opinion scores.","PeriodicalId":371831,"journal":{"name":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2018.8587018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Over the years different machine-learning based image quality assessment models have been proposed. In this paper, we analyze data partitioning. Since statistical data partitioning may affect the results due to the number of iterations, we analyze the effect of content-aware partitioning. The results are analyzed for different partitioning methods and models using publicly available dataset and difference mean opinion scores.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的盲视觉质量评估与内容感知数据划分
多年来,人们提出了不同的基于机器学习的图像质量评估模型。在本文中,我们分析了数据分区。由于统计数据分区可能会由于迭代次数而影响结果,因此我们分析了内容感知分区的效果。使用公开可用的数据集和不同的平均意见得分对不同的划分方法和模型进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Brain - Machine Interfaces in the Context of Artificial Intelligence Development Feature Selection for Image Distortion Classification Supervised and Unsupervised Learning of Fetal Heart Rate Tracings with Deep Gaussian Processes Modeling and Optimization of Hexavalent Chromium Sorption onto Amberjet 1200H by Using Multiple-Linear Regression Real-Time Multi-Sensor Infrared Imagery Enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1