Prognostic Analysis of Polypoidal Choroidal Vasculopathy Using an Image-Based Approach

Yong-ming Chen, Wei-Yang Lin, Chia-Ling Tsai
{"title":"Prognostic Analysis of Polypoidal Choroidal Vasculopathy Using an Image-Based Approach","authors":"Yong-ming Chen, Wei-Yang Lin, Chia-Ling Tsai","doi":"10.1109/ICS.2016.0088","DOIUrl":null,"url":null,"abstract":"In this paper, we rstly propose to perform prognostic analysis of polypoidal choroidal vasculopathy (PCV) using indocyanine green angiography (ICGA) sequence. Our goal is to develop a computer-aided diagnostic system which can predict the likely treatment outcome of patients with PCV based on their before-treatment ICGA sequences. In order to create a prognostic model for PCV, we utilize both the before-treatment and the aftertreatment ICGA sequences collected in the EVEREST study. By comparing the before-treatment and the after-treatment PCV region in ICGA sequences, we can generate positive and negative samples for training our prognostic model. Here, we design an 8-layer convolution neural network (CNN) and use it to serve as the prognostic model. We have conducted experiments using 17 patients cases. In particular, we perform leave-one-out cross validation so that each patient can be utilized as testing case once. Our proposed method achieves promising results on the EVEREST dataset.","PeriodicalId":281088,"journal":{"name":"2016 International Computer Symposium (ICS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Computer Symposium (ICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICS.2016.0088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we rstly propose to perform prognostic analysis of polypoidal choroidal vasculopathy (PCV) using indocyanine green angiography (ICGA) sequence. Our goal is to develop a computer-aided diagnostic system which can predict the likely treatment outcome of patients with PCV based on their before-treatment ICGA sequences. In order to create a prognostic model for PCV, we utilize both the before-treatment and the aftertreatment ICGA sequences collected in the EVEREST study. By comparing the before-treatment and the after-treatment PCV region in ICGA sequences, we can generate positive and negative samples for training our prognostic model. Here, we design an 8-layer convolution neural network (CNN) and use it to serve as the prognostic model. We have conducted experiments using 17 patients cases. In particular, we perform leave-one-out cross validation so that each patient can be utilized as testing case once. Our proposed method achieves promising results on the EVEREST dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图像的方法对息肉样脉络膜血管病变的预后分析
在本文中,我们首先建议使用吲哚菁绿血管造影(ICGA)序列对息肉样脉络膜血管病变(PCV)进行预后分析。我们的目标是开发一种计算机辅助诊断系统,该系统可以根据治疗前的ICGA序列预测PCV患者可能的治疗结果。为了建立PCV的预后模型,我们利用了EVEREST研究中收集的治疗前和治疗后的ICGA序列。通过比较ICGA序列中治疗前和治疗后的PCV区域,我们可以生成阳性和阴性样本来训练我们的预后模型。在这里,我们设计了一个8层卷积神经网络(CNN),并使用它作为预测模型。我们对17例患者进行了实验。特别是,我们执行留一交叉验证,以便每个患者都可以作为一次测试病例。我们提出的方法在EVEREST数据集上取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Resource Allocation Algorithms for LTE over Wi-Fi Spectrum A Dynamically Adjusted Vehicles Navigation Scheme with Real-Time Traffic Information to Relieve Regional Traffic Congestion in Vehicular Ad-Hoc Networks Forward/Backward Unforgeable Digital Signature Scheme Using Symmetric-Key Crypto-System Mobile Edge Fog Computing in 5G Era: Architecture and Implementation Investigating the Determinants of Mobile Learning Acceptance in Higher Education Based on UTAUT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1