Indonesian Gender Equality Survey Analysis Using Feature Selection Based Clustering

T. Hashimoto, Kilho Shin, D. Shepard, T. Kuboyama
{"title":"Indonesian Gender Equality Survey Analysis Using Feature Selection Based Clustering","authors":"T. Hashimoto, Kilho Shin, D. Shepard, T. Kuboyama","doi":"10.1109/iCAST51195.2020.9319480","DOIUrl":null,"url":null,"abstract":"This paper presents an analysis of an Indonesian gender equality survey: in 2019, we conducted a survey of attitudes about gender roles in Indonesia and obtained data from 122 individuals. The obtained data were analyzed using our original clustering method (UFVS, Unsupervised Feature Value Selection) to form clusters. The extracted features characterized the clusters and helped to analyze the attitudes of Indonesians towards gender equality. This method allowed the respondents to be grouped by features and each group characteristics could be easily identified. It facilitated the understanding of the survey data.","PeriodicalId":212570,"journal":{"name":"2020 11th International Conference on Awareness Science and Technology (iCAST)","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCAST51195.2020.9319480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an analysis of an Indonesian gender equality survey: in 2019, we conducted a survey of attitudes about gender roles in Indonesia and obtained data from 122 individuals. The obtained data were analyzed using our original clustering method (UFVS, Unsupervised Feature Value Selection) to form clusters. The extracted features characterized the clusters and helped to analyze the attitudes of Indonesians towards gender equality. This method allowed the respondents to be grouped by features and each group characteristics could be easily identified. It facilitated the understanding of the survey data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特征选择聚类的印尼性别平等调查分析
本文对印度尼西亚性别平等调查进行了分析:2019年,我们对印度尼西亚的性别角色态度进行了调查,并获得了122个人的数据。使用原始的聚类方法(uvs,无监督特征值选择)对获得的数据进行分析,形成聚类。所提取的特征是这些分类的特征,并有助于分析印度尼西亚人对性别平等的态度。这种方法允许被调查者按特征分组,每一组特征可以很容易地识别。它有助于理解调查数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Skeleton Guided Conflict-Free Hand Gesture Recognition for Robot Control Improved Spiking Neural Networks with multiple neurons for digit recognition A Lightweight Transformer with Convolutional Attention Social Media Mining with Dynamic Clustering: A Case Study by COVID-19 Tweets A Visual-SLAM based Line Laser Scanning System using Semantically Segmented Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1