{"title":"PGT: Proposal-guided object tracking","authors":"Han-Ul Kim, Chang-Su Kim","doi":"10.1109/APSIPA.2017.8282318","DOIUrl":null,"url":null,"abstract":"We propose a robust visual tracking system, which refines initial estimates of a base tracker by employing object proposal techniques. First, we decompose the base tracker into three building blocks: representation method, appearance model, and model update strategy. We then design each building block by adopting and improving ideas from recent successful trackers. Second, we propose the proposal-guided tracking (PGT) algorithm. Given proposals generated by an edge-based object proposal technique, we select only the proposals that can improve the result of the base tracker using several cues. Then, we discriminate target proposals from non-target ones, based on the nearest neighbor classification using the target and background models. Finally, we replace the result of the base tracker with the best target proposal. Experimental results demonstrate that proposed PGT algorithm provides excellent results on a visual tracking benchmark.","PeriodicalId":142091,"journal":{"name":"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2017.8282318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a robust visual tracking system, which refines initial estimates of a base tracker by employing object proposal techniques. First, we decompose the base tracker into three building blocks: representation method, appearance model, and model update strategy. We then design each building block by adopting and improving ideas from recent successful trackers. Second, we propose the proposal-guided tracking (PGT) algorithm. Given proposals generated by an edge-based object proposal technique, we select only the proposals that can improve the result of the base tracker using several cues. Then, we discriminate target proposals from non-target ones, based on the nearest neighbor classification using the target and background models. Finally, we replace the result of the base tracker with the best target proposal. Experimental results demonstrate that proposed PGT algorithm provides excellent results on a visual tracking benchmark.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PGT:提议引导的对象跟踪
我们提出了一个鲁棒的视觉跟踪系统,该系统通过使用目标建议技术来改进基本跟踪器的初始估计。首先,我们将基本跟踪器分解为三个构建块:表示方法、外观模型和模型更新策略。然后,我们通过采用和改进最近成功的跟踪器的想法来设计每个构建块。其次,我们提出了建议引导跟踪(PGT)算法。给定由基于边缘的目标建议技术生成的建议,我们只选择可以使用多个线索改善基础跟踪器结果的建议。然后,我们基于目标和背景模型的最近邻分类,区分目标和非目标提案。最后,我们用最佳目标建议替换基本跟踪器的结果。实验结果表明,所提出的PGT算法在视觉跟踪基准上取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Locomotion control of a serpentine crawling robot inspired by central pattern generators On the construction of more human-like chatbots: Affect and emotion analysis of movie dialogue data Pose-invariant kinematic features for action recognition CNN-based bottleneck feature for noise robust query-by-example spoken term detection Robust template matching using scale-adaptive deep convolutional features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1