Development of overhead distribution line diagnosis system program

Dong Hyeon Chung, Deok Jin Lee
{"title":"Development of overhead distribution line diagnosis system program","authors":"Dong Hyeon Chung, Deok Jin Lee","doi":"10.30693/smj.2023.12.5.81","DOIUrl":null,"url":null,"abstract":"In this paper, accidents in high-voltage overhead distribution lines, which provide stable power supply in the power system, cause inconvenience in life and disruption of production of companies. 22.9 [kV] high-voltage overhead power distribution lines aim to improve reliability and stability, such as damage caused by rain, snow, wind, etc., or electric shock prevention. Therefore, in order to prevent wire disconnection accidents due to deterioration of electrical conductivity or tensile strength due to corrosion of overhead distribution lines, it is necessary to prevent unexpected accidents in the future through regular inspection and repair. In order to diagnose deterioration due to corrosion of distribution lines, a diagnostic system (measuring instrument) is installed on the wires to monitor the condition of the wires. The manager on the ground receives the measured data through ZigBee wireless communication, controls the diagnosis system through the diagnosis system program, and grasps the condition of the overhead distribution line through the measured data and photographed photos, and predicts the life of the wire along with the visual inspection method. developed a program.","PeriodicalId":249252,"journal":{"name":"Korean Institute of Smart Media","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Institute of Smart Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30693/smj.2023.12.5.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, accidents in high-voltage overhead distribution lines, which provide stable power supply in the power system, cause inconvenience in life and disruption of production of companies. 22.9 [kV] high-voltage overhead power distribution lines aim to improve reliability and stability, such as damage caused by rain, snow, wind, etc., or electric shock prevention. Therefore, in order to prevent wire disconnection accidents due to deterioration of electrical conductivity or tensile strength due to corrosion of overhead distribution lines, it is necessary to prevent unexpected accidents in the future through regular inspection and repair. In order to diagnose deterioration due to corrosion of distribution lines, a diagnostic system (measuring instrument) is installed on the wires to monitor the condition of the wires. The manager on the ground receives the measured data through ZigBee wireless communication, controls the diagnosis system through the diagnosis system program, and grasps the condition of the overhead distribution line through the measured data and photographed photos, and predicts the life of the wire along with the visual inspection method. developed a program.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
架空配电线路诊断系统程序的开发
高压架空配电线路在电力系统中提供稳定的电力供应,其事故给人们的生活带来不便,给企业的生产造成中断。22.9 [kV]高压架空配电线路旨在提高可靠性和稳定性,如雨雪风等造成的破坏,或防止触电。因此,为了防止架空配电线路因腐蚀导致导电性恶化或抗拉强度下降而发生断线事故,有必要通过定期检查和维修,防止将来发生意外事故。为了诊断配电线路因腐蚀引起的劣化,在电线上安装了诊断系统(测量仪器)来监测电线的状况。地面管理人员通过ZigBee无线通信接收测量数据,通过诊断系统程序控制诊断系统,并通过测量数据和拍摄的照片掌握架空配电线路的状况,并通过目测方法预测电线的寿命。开发了一个程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Evaluation of Object Detection Deep Learning Model for Paralichthys olivaceus Disease Symptoms Classification Exploring the Impact of Pesticide Usage on Crop Condition: A Causal Analysis of Agricultural Factors Journal of Knowledge Information Technology and Systems) Harvest Forecasting Improvement Using Federated Learning and Ensemble Model Apple detection dataset with visibility and deep learning detectionusing adaptive heatmap regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1