A data mining application on moving object data

Yasen Yakufu, C. Atay
{"title":"A data mining application on moving object data","authors":"Yasen Yakufu, C. Atay","doi":"10.1109/ICDIM.2016.7829757","DOIUrl":null,"url":null,"abstract":"With the wide availability of GPS devices in our lives, massive amounts of object movement data have been collected from various moving object targets, such as mobile devices, animals, and vehicles. In the last decade, Moving Object Databases (MOD) have attracted many researchers. Analyzing such data has deep implications in many areas, such as ecological study and traffic control. In this study, we focus on moving object data (moving points) analysis and retrieve valuable information for knowledge discovery. In this research, a moving object data model is implemented in the object-relational database system, additionally some special queries and data mining techniques are performed. Retrieving information directly from unorganized spatial-temporal data is almost impossible. However, not only a vast amount of spatial-temporal data sets organized into MOD data model but also the discovery of valuable knowledge from spatial-temporal data to help decision support processes is possible now owing to this research implementation.","PeriodicalId":146662,"journal":{"name":"2016 Eleventh International Conference on Digital Information Management (ICDIM)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Eleventh International Conference on Digital Information Management (ICDIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2016.7829757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With the wide availability of GPS devices in our lives, massive amounts of object movement data have been collected from various moving object targets, such as mobile devices, animals, and vehicles. In the last decade, Moving Object Databases (MOD) have attracted many researchers. Analyzing such data has deep implications in many areas, such as ecological study and traffic control. In this study, we focus on moving object data (moving points) analysis and retrieve valuable information for knowledge discovery. In this research, a moving object data model is implemented in the object-relational database system, additionally some special queries and data mining techniques are performed. Retrieving information directly from unorganized spatial-temporal data is almost impossible. However, not only a vast amount of spatial-temporal data sets organized into MOD data model but also the discovery of valuable knowledge from spatial-temporal data to help decision support processes is possible now owing to this research implementation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移动对象数据的数据挖掘应用
随着GPS设备在我们生活中的广泛应用,大量的物体运动数据已经从各种移动物体目标(如移动设备、动物和车辆)中收集到。在过去的十年中,移动对象数据库(MOD)吸引了许多研究者。分析这些数据在生态研究和交通控制等许多领域具有深远的意义。在本研究中,我们专注于对运动物体数据(运动点)的分析,并检索有价值的信息进行知识发现。本研究在对象关系数据库系统中实现了一个移动对象数据模型,并实现了一些特殊的查询和数据挖掘技术。直接从无组织的时空数据中检索信息几乎是不可能的。然而,由于这项研究的实施,现在不仅可以将大量的时空数据集组织到MOD数据模型中,而且可以从时空数据中发现有价值的知识来帮助决策支持过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The DEWI high-level architecture: Wireless sensor networks in industrial applications Wireless avionics intra-communications: Current trends and design issues Enabling OLAP analyses on the web of data Adding quality in the user requirements specification: A first approach Using rate equation for modeling triad dynamics on Instagram
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1