A statistical modeling approach to content based video retrieval

M. Naphade, S. Basu, John R. Smith, Ching-Yung Lin, Belle L. Tseng
{"title":"A statistical modeling approach to content based video retrieval","authors":"M. Naphade, S. Basu, John R. Smith, Ching-Yung Lin, Belle L. Tseng","doi":"10.1109/ICPR.2002.1048463","DOIUrl":null,"url":null,"abstract":"Statistical: modeling for content based retrieval is examined in the context of recent TREC Video benchmark exercise. The TREC Video exercise can be viewed as a test bed for evaluation and comparison of a variety of different algorithms on a set of high-level queries for multimedia retrieval. We report on the use of techniques adopted from statistical learning theory. Our method depends on training of models based on large data sets. Particularly, we use statistical models such as Gaussian mixture models to build computational representations for a variety of semantic concepts including rocket-launch, outdoor greenery, sky etc. Training requires a large amount of annotated (labeled) data. Thus, we explore the use of active learning for the annotation engine that minimizes the number of training samples to be labeled for satisfactory performance.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Statistical: modeling for content based retrieval is examined in the context of recent TREC Video benchmark exercise. The TREC Video exercise can be viewed as a test bed for evaluation and comparison of a variety of different algorithms on a set of high-level queries for multimedia retrieval. We report on the use of techniques adopted from statistical learning theory. Our method depends on training of models based on large data sets. Particularly, we use statistical models such as Gaussian mixture models to build computational representations for a variety of semantic concepts including rocket-launch, outdoor greenery, sky etc. Training requires a large amount of annotated (labeled) data. Thus, we explore the use of active learning for the annotation engine that minimizes the number of training samples to be labeled for satisfactory performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于内容的视频检索的统计建模方法
统计:基于内容的检索建模在最近的TREC视频基准练习的背景下进行了检查。TREC视频练习可以被视为一个测试平台,用于评估和比较多媒体检索的一组高级查询上的各种不同算法。我们报告了从统计学习理论中采用的技术的使用。我们的方法依赖于基于大数据集的模型训练。特别是,我们使用高斯混合模型等统计模型来构建各种语义概念的计算表示,包括火箭发射,室外绿化,天空等。训练需要大量的标注(标记)数据。因此,我们探索了在标注引擎中使用主动学习,以最大限度地减少要标记的训练样本的数量,以获得令人满意的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pattern recognition for humanitarian de-mining Data clustering using evidence accumulation Facial expression recognition using pseudo 3-D hidden Markov models Speeding up SVM decision based on mirror points Real-time tracking and estimation of plane pose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1