Using In-Process Testing Metrics to Estimate Post-Release Field Quality

Nachiappan Nagappan, L. Williams, M. Vouk, J. Osborne
{"title":"Using In-Process Testing Metrics to Estimate Post-Release Field Quality","authors":"Nachiappan Nagappan, L. Williams, M. Vouk, J. Osborne","doi":"10.1109/ISSRE.2007.18","DOIUrl":null,"url":null,"abstract":"In industrial practice, information on the software field quality of a product is available too late in the software lifecycle to guide affordable corrective action. An important step towards remediation of this problem lies in the ability to provide an early estimation of post-release field quality. This paper evaluates the Software Testing and Reliability Early Warning for Java (STREW-J) metric suite leveraging the software testing effort to predict post-release field quality early in the software development phases. The metric suite is applicable for software products implemented in Java for which an extensive suite of automated unit test cases are incrementally created as development proceeds. We validated the prediction model using the STREW-J metrics via a two-phase case study approach which involved 27 medium-sized open source projects, and five industrial projects. The error in estimation and the sensitivity of the predictions indicate the STREW-J metric suite can be used effectively to predict post-release software field quality.","PeriodicalId":193805,"journal":{"name":"The 18th IEEE International Symposium on Software Reliability (ISSRE '07)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 18th IEEE International Symposium on Software Reliability (ISSRE '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSRE.2007.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In industrial practice, information on the software field quality of a product is available too late in the software lifecycle to guide affordable corrective action. An important step towards remediation of this problem lies in the ability to provide an early estimation of post-release field quality. This paper evaluates the Software Testing and Reliability Early Warning for Java (STREW-J) metric suite leveraging the software testing effort to predict post-release field quality early in the software development phases. The metric suite is applicable for software products implemented in Java for which an extensive suite of automated unit test cases are incrementally created as development proceeds. We validated the prediction model using the STREW-J metrics via a two-phase case study approach which involved 27 medium-sized open source projects, and five industrial projects. The error in estimation and the sensitivity of the predictions indicate the STREW-J metric suite can be used effectively to predict post-release software field quality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用过程中测试度量来评估发布后的领域质量
在工业实践中,关于产品的软件领域质量的信息在软件生命周期中太迟了,无法指导可负担的纠正措施。修复这个问题的一个重要步骤在于能够提供发布后现场质量的早期估计。本文评估了Java的软件测试和可靠性早期预警(STREW-J)度量套件,利用软件测试工作来预测软件开发阶段早期发布后的领域质量。度量套件适用于在Java中实现的软件产品,随着开发的进行,大量的自动化单元测试用例被逐步创建。我们使用STREW-J指标通过两阶段案例研究方法验证了预测模型,该方法涉及27个中型开源项目和5个工业项目。估计误差和预测灵敏度表明STREW-J度量套件可以有效地用于预测发布后软件领域的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-parametric Predictive Inference of Preventive Rejuvenation Schedule in Operational Software Systems Predicting Subsystem Failures using Dependency Graph Complexities Integrated Software Vulnerability and Security Functionality Assessment Correlations between Internal Software Metrics and Software Dependability in a Large Population of Small C/C++ Programs On the Impact of Injection Triggers for OS Robustness Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1