R. Kanase, A. Kumavat, Rohit Datta Sinalkar, Sakshi Somani
{"title":"Pose Estimation and Correcting Exercise Posture","authors":"R. Kanase, A. Kumavat, Rohit Datta Sinalkar, Sakshi Somani","doi":"10.1051/itmconf/20214003031","DOIUrl":null,"url":null,"abstract":"Our posture shows an impact on health both mentally and physically. Various methods have been proposed in order to detect different postures of a human being. Posture analysis also plays an essential role in the field of medicine such as finding out sleeping posture of a patient. Image processing based and sensor based approach are the leading posture analysis approaches. Sensor based approach is used by numerous models to focus on posture detection in which the person needs to wear some particular devices or sensors which is helpful in cases such as fall detection. Image processing based approach helps to analyze postures such as standing and sitting postures. Fitness exercises are exceptionally beneficial to individual health, but, they can also be ineffectual and quite possibly harmful if performed incorrectly. When someone does not use the proper posture, exercise mistakes occur. This proposed application utilizes pose estimation and detects the user’s exercise posture and provides detailed, customized recommendations on how the user can improve their posture. A pose estimator called OpenPose is used in this application. OpenPose is a pre trained model composed of a multi-stage CNN to detect a user’s posture. This application then evaluates the vector geometry of the pose through an exercise to provide helpful feedback. Pose estimation is a method in which spatial locations of key body joints is calculated using image or video of the person. This computer vision technique detects human posture in images or videos and shows the keypoints such as elbow or knee in the output image.","PeriodicalId":433898,"journal":{"name":"ITM Web of Conferences","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITM Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/itmconf/20214003031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Our posture shows an impact on health both mentally and physically. Various methods have been proposed in order to detect different postures of a human being. Posture analysis also plays an essential role in the field of medicine such as finding out sleeping posture of a patient. Image processing based and sensor based approach are the leading posture analysis approaches. Sensor based approach is used by numerous models to focus on posture detection in which the person needs to wear some particular devices or sensors which is helpful in cases such as fall detection. Image processing based approach helps to analyze postures such as standing and sitting postures. Fitness exercises are exceptionally beneficial to individual health, but, they can also be ineffectual and quite possibly harmful if performed incorrectly. When someone does not use the proper posture, exercise mistakes occur. This proposed application utilizes pose estimation and detects the user’s exercise posture and provides detailed, customized recommendations on how the user can improve their posture. A pose estimator called OpenPose is used in this application. OpenPose is a pre trained model composed of a multi-stage CNN to detect a user’s posture. This application then evaluates the vector geometry of the pose through an exercise to provide helpful feedback. Pose estimation is a method in which spatial locations of key body joints is calculated using image or video of the person. This computer vision technique detects human posture in images or videos and shows the keypoints such as elbow or knee in the output image.