Crowd-ML: A Privacy-Preserving Learning Framework for a Crowd of Smart Devices

Jihun Hamm, Adam C. Champion, Guoxing Chen, M. Belkin, D. Xuan
{"title":"Crowd-ML: A Privacy-Preserving Learning Framework for a Crowd of Smart Devices","authors":"Jihun Hamm, Adam C. Champion, Guoxing Chen, M. Belkin, D. Xuan","doi":"10.1109/ICDCS.2015.10","DOIUrl":null,"url":null,"abstract":"Smart devices with built-in sensors, computational capabilities, and network connectivity have become increasingly pervasive. Crowds of smart devices offer opportunities to collectively sense and perform computing tasks at an unprecedented scale. This paper presents Crowd-ML, a privacy-preserving machine learning framework for a crowd of smart devices, which can solve a wide range of learning problems for crowd sensing data with differential privacy guarantees. Crowd-ML endows a crowd sensing system with the ability to learn classifiers or predictors online from crowd sensing data privately with minimal computational overhead on devices and servers, suitable for practical large-scale use of the framework. We analyze the performance and scalability of Crowd-ML and implement the system with off-the-shelf smartphones as a proof of concept. We demonstrate the advantages of Crowd-ML with real and simulated experiments under various conditions.","PeriodicalId":129182,"journal":{"name":"2015 IEEE 35th International Conference on Distributed Computing Systems","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 35th International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2015.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

Abstract

Smart devices with built-in sensors, computational capabilities, and network connectivity have become increasingly pervasive. Crowds of smart devices offer opportunities to collectively sense and perform computing tasks at an unprecedented scale. This paper presents Crowd-ML, a privacy-preserving machine learning framework for a crowd of smart devices, which can solve a wide range of learning problems for crowd sensing data with differential privacy guarantees. Crowd-ML endows a crowd sensing system with the ability to learn classifiers or predictors online from crowd sensing data privately with minimal computational overhead on devices and servers, suitable for practical large-scale use of the framework. We analyze the performance and scalability of Crowd-ML and implement the system with off-the-shelf smartphones as a proof of concept. We demonstrate the advantages of Crowd-ML with real and simulated experiments under various conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crowd- ml:一种用于大量智能设备的隐私保护学习框架
具有内置传感器、计算能力和网络连接的智能设备变得越来越普遍。大量智能设备提供了以前所未有的规模集体感知和执行计算任务的机会。本文提出了一种用于智能设备群体的隐私保护机器学习框架crowd - ml,它可以解决具有差分隐私保证的群体感知数据的广泛学习问题。crowd - ml使人群感知系统能够从人群感知数据中在线学习分类器或预测器,并且在设备和服务器上的计算开销最小,适合实际大规模使用该框架。我们分析了Crowd-ML的性能和可扩展性,并使用现成的智能手机实现了该系统,作为概念验证。我们通过各种条件下的真实和模拟实验证明了Crowd-ML的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FLOWPROPHET: Generic and Accurate Traffic Prediction for Data-Parallel Cluster Computing Improving the Energy Benefit for 802.3az Using Dynamic Coalescing Techniques Systematic Mining of Associated Server Herds for Malware Campaign Discovery Rain Bar: Robust Application-Driven Visual Communication Using Color Barcodes Optimizing Roadside Advertisement Dissemination in Vehicular Cyber-Physical Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1