Evolution-in-materio: Solving bin packing problems using materials

Maktuba Mohid, J. Miller, Simon Harding, G. Tufte, O. R. Lykkebø, M. K. Massey, M. Petty
{"title":"Evolution-in-materio: Solving bin packing problems using materials","authors":"Maktuba Mohid, J. Miller, Simon Harding, G. Tufte, O. R. Lykkebø, M. K. Massey, M. Petty","doi":"10.1109/ICES.2014.7008720","DOIUrl":null,"url":null,"abstract":"Evolution-in-materio (EIM) is a form of intrinsic evolution in which evolutionary algorithms are allowed to manipulate physical variables that are applied to materials. This method aims to configure materials so that they solve computational problems without requiring a detailed understanding of the properties of the materials. The concept gained attention through the work of Adrian Thompson who in 1996 showed that evolution could be used to design circuits in FPGAS that exploited the physical properties of the underlying silicon [21]. In this paper, we show that using a purpose-built hardware platform called Mecobo, we can solve computational problems by evolving voltages, signals and the way they are applied to a microelectrode array with a chamber containing single-walled carbon nanotubes and a polymer. Here we demonstrate for the first time that this methodology can be applied to the well-known computational problem of bin packing. Results on benchmark problems show that the technique can obtain results reasonably close to the known global optima. This suggests that EIM is a promising method for configuring materials to carry out useful computation.","PeriodicalId":432958,"journal":{"name":"2014 IEEE International Conference on Evolvable Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Evolvable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICES.2014.7008720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Evolution-in-materio (EIM) is a form of intrinsic evolution in which evolutionary algorithms are allowed to manipulate physical variables that are applied to materials. This method aims to configure materials so that they solve computational problems without requiring a detailed understanding of the properties of the materials. The concept gained attention through the work of Adrian Thompson who in 1996 showed that evolution could be used to design circuits in FPGAS that exploited the physical properties of the underlying silicon [21]. In this paper, we show that using a purpose-built hardware platform called Mecobo, we can solve computational problems by evolving voltages, signals and the way they are applied to a microelectrode array with a chamber containing single-walled carbon nanotubes and a polymer. Here we demonstrate for the first time that this methodology can be applied to the well-known computational problem of bin packing. Results on benchmark problems show that the technique can obtain results reasonably close to the known global optima. This suggests that EIM is a promising method for configuring materials to carry out useful computation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
材料进化:利用材料解决装箱问题
材料进化(EIM)是一种内在进化的形式,其中进化算法被允许操纵应用于材料的物理变量。这种方法的目的是配置材料,使他们解决计算问题,而不需要详细了解材料的性质。这个概念通过Adrian Thompson的工作获得了关注,他在1996年表明,进化可以用于设计fpga中的电路,利用底层硅的物理特性[21]。在本文中,我们展示了使用一个名为Mecobo的专用硬件平台,我们可以通过不断变化的电压、信号以及将它们应用于含有单壁碳纳米管和聚合物的微电极阵列的方式来解决计算问题。在这里,我们首次证明了这种方法可以应用于众所周知的装箱计算问题。在基准问题上的结果表明,该方法可以得到与已知全局最优值相当接近的结果。这表明EIM是一种很有前途的配置材料进行有用计算的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temperature management for heterogeneous multi-core FPGAs using adaptive evolutionary multi-objective approaches In-situ evolution of an antenna array with hardware fault recovery Sustainability assurance modeling for SRAM-based FPGA evolutionary self-repair Evolution-in-materio: A frequency classifier using materials How evolvable is novelty search?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1