Exploring K-means clustering and skyline for web service selection

Sandeep Kumar, Dr. Lalit Purohit
{"title":"Exploring K-means clustering and skyline for web service selection","authors":"Sandeep Kumar, Dr. Lalit Purohit","doi":"10.1109/ICIINFS.2016.8263010","DOIUrl":null,"url":null,"abstract":"During the last decade, an exponential growth of web services is observed over the Internet. This offers a big challenge for the web service based systems to make the optimal selection of the desired web service. In this work, we have used a two layer architecture for web service selection, prefiltering followed by selection. The use of K-Means clustering technique for grouping the web services with similar Quality of Service (QoS) under a common umbrella is explored. This act as prefiltering step for candidate web services to filter out unrelated web services. From the set of filtered web services, a non-dominated set of web services is obtained using skyline technique. The first step ensures to include only those web services, which are related based on QoS information. The second step operates on the reduced problem set and identifies the best web service among the group. The real world web service dataset is used to test the approach and an improvement in the web service selection is observed.","PeriodicalId":234609,"journal":{"name":"2016 11th International Conference on Industrial and Information Systems (ICIIS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 11th International Conference on Industrial and Information Systems (ICIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2016.8263010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

During the last decade, an exponential growth of web services is observed over the Internet. This offers a big challenge for the web service based systems to make the optimal selection of the desired web service. In this work, we have used a two layer architecture for web service selection, prefiltering followed by selection. The use of K-Means clustering technique for grouping the web services with similar Quality of Service (QoS) under a common umbrella is explored. This act as prefiltering step for candidate web services to filter out unrelated web services. From the set of filtered web services, a non-dominated set of web services is obtained using skyline technique. The first step ensures to include only those web services, which are related based on QoS information. The second step operates on the reduced problem set and identifies the best web service among the group. The real world web service dataset is used to test the approach and an improvement in the web service selection is observed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索网络服务选择的k -均值聚类和天际线
在过去十年中,Internet上的web服务呈指数级增长。这为基于web服务的系统提供了一个很大的挑战,即如何对所需的web服务进行最佳选择。在这项工作中,我们使用了两层架构进行web服务选择,先预过滤,然后选择。探讨了k -均值聚类技术对具有相似服务质量(QoS)的web服务进行分组的方法。作为候选web服务的预过滤步骤,过滤掉不相关的web服务。从过滤后的web服务集合中,利用天际线技术得到一个非支配的web服务集合。第一步确保只包含那些基于QoS信息相关的web服务。第二步处理简化后的问题集,并在组中确定最佳web服务。使用真实世界的web服务数据集来测试该方法,并观察到web服务选择方面的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gain tuning of Lyapunov function based controller using PSO for mobile robot control Parametric analysis of radar cross section (RCS) of cylinder coated with epsilon-negative (ENG) and Mu-negative (MNG) metamaterials Bit partitioning schemes for multiceli zero-forcing coordinated beamforming Multi key algorithm for performance enhancement of video encryption Effect of ethanol concentration and cell orientation on the performance of passive direct ethanol fuel cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1