A Work-Time Optimal Parallel Exhaustive Search Algorithm for the QUBO and the Ising model, with GPU implementation

Masaki Tao, K. Nakano, Yasuaki Ito, Ryota Yasudo, Masaru Tatekawa, Ryota Katsuki, Takashi Yazane, Yoko Inaba
{"title":"A Work-Time Optimal Parallel Exhaustive Search Algorithm for the QUBO and the Ising model, with GPU implementation","authors":"Masaki Tao, K. Nakano, Yasuaki Ito, Ryota Yasudo, Masaru Tatekawa, Ryota Katsuki, Takashi Yazane, Yoko Inaba","doi":"10.1109/IPDPSW50202.2020.00098","DOIUrl":null,"url":null,"abstract":"The main contribution of this paper is to present a simple exhaustive search algorithm for the quadratic un-constraint binary optimization (QUBO) problem. It computes the values of the objective function $E(X)$ for all n-bit input vector X in $O(2^{n})$ time. Since $\\Omega(2^{n})$ time is necessary to output $E(X)$ for all 2n vectors X, this sequential algorithm is optimal. We also present a work-time optimal parallel algorithm running $O(\\log n)$ time using $2^{n}/\\log n$ processors on the CREW-PRAM. This parallel algorithm is work optimal, because the total number of computational operations is equal to the running time of the optimal sequential algorithm. Also, it is time optimal because any parallel algorithm using any large number of processors takes at least $\\Omega(\\log n)$ time for evaluating E(X). Further, we have implemented this parallel algorithm to run on the GPU. The experimental results on NVIDIA GeForce RTX 2080Ti GPU show that our GPU implementation runs more than 1000 times faster than the sequential algorithm running on Intel Corei7-8700K CPU(3.70GHz) for the QUBO with n-bit vector whenever n$\\geq$33. We also compare our exhaustive search parallel algorithm with several non-exhaustive search approaches for solving the QUBO including D-Wave 2000Q quantum annealer, simulated annealing algorithm, and Gurobi optimizer.","PeriodicalId":398819,"journal":{"name":"2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW50202.2020.00098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The main contribution of this paper is to present a simple exhaustive search algorithm for the quadratic un-constraint binary optimization (QUBO) problem. It computes the values of the objective function $E(X)$ for all n-bit input vector X in $O(2^{n})$ time. Since $\Omega(2^{n})$ time is necessary to output $E(X)$ for all 2n vectors X, this sequential algorithm is optimal. We also present a work-time optimal parallel algorithm running $O(\log n)$ time using $2^{n}/\log n$ processors on the CREW-PRAM. This parallel algorithm is work optimal, because the total number of computational operations is equal to the running time of the optimal sequential algorithm. Also, it is time optimal because any parallel algorithm using any large number of processors takes at least $\Omega(\log n)$ time for evaluating E(X). Further, we have implemented this parallel algorithm to run on the GPU. The experimental results on NVIDIA GeForce RTX 2080Ti GPU show that our GPU implementation runs more than 1000 times faster than the sequential algorithm running on Intel Corei7-8700K CPU(3.70GHz) for the QUBO with n-bit vector whenever n$\geq$33. We also compare our exhaustive search parallel algorithm with several non-exhaustive search approaches for solving the QUBO including D-Wave 2000Q quantum annealer, simulated annealing algorithm, and Gurobi optimizer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种针对QUBO和Ising模型的工作时间最优并行穷举搜索算法,带GPU实现
本文的主要贡献是提出了一种简单的穷举搜索算法来求解二次型无约束二元优化问题。它在$O(2^{n})$时间内计算所有n位输入向量X的目标函数$E(X)$的值。因为对于所有2n个向量X输出$E(X)$需要$\Omega(2^{n})$时间,所以这个顺序算法是最优的。我们还提出了在CREW-PRAM上使用$2^{n}/\log n$处理器运行$O(\log n)$时间的工作时间优化并行算法。这种并行算法是工作最优的,因为计算操作的总数等于最优顺序算法的运行时间。此外,它是时间最优的,因为使用任何大量处理器的并行算法至少需要$\Omega(\log n)$时间来计算E(X)。此外,我们已经实现了该并行算法在GPU上运行。在NVIDIA GeForce RTX 2080Ti GPU上的实验结果表明,对于n位向量的QUBO,当n $\geq$ 33时,我们的GPU实现比在Intel Corei7-8700K CPU(3.70GHz)上运行的顺序算法快1000倍以上。我们还将穷举搜索并行算法与几种求解QUBO的非穷举搜索方法(包括D-Wave 2000Q量子退火、模拟退火算法和Gurobi优化器)进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PDCunplugged: A Free Repository of Unplugged Parallel Distributed Computing Activities Competitive Evolution of a UAV Swarm for Improving Intruder Detection Rates Workshop 7: HPBDC High-Performance Big Data and Cloud Computing Teaching Cloud Computing: Motivations, Challenges and Tools Exploring Chapel Productivity Using Some Graph Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1