Comparison of Algorithms for Fractional Differentiation of Images

M. Paskas
{"title":"Comparison of Algorithms for Fractional Differentiation of Images","authors":"M. Paskas","doi":"10.1109/TELFOR56187.2022.9983676","DOIUrl":null,"url":null,"abstract":"This paper brings analysis of frequently used algorithms for calculation of the fractional gradients of images. The measures used for the quantitative assessment of the considered algorithms are signal-to-noise ratio and effective average gradient. The results obtained on standard natural images show a distinctive trend in behavior over all images and superior algorithms for certain orders of differentiation. Both measures show similar behavior for the lower orders of differentiation whereas the higher orders of differentiation lead to different treatment of the considered algorithms.","PeriodicalId":277553,"journal":{"name":"2022 30th Telecommunications Forum (TELFOR)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Telecommunications Forum (TELFOR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELFOR56187.2022.9983676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper brings analysis of frequently used algorithms for calculation of the fractional gradients of images. The measures used for the quantitative assessment of the considered algorithms are signal-to-noise ratio and effective average gradient. The results obtained on standard natural images show a distinctive trend in behavior over all images and superior algorithms for certain orders of differentiation. Both measures show similar behavior for the lower orders of differentiation whereas the higher orders of differentiation lead to different treatment of the considered algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像分数阶微分算法的比较
本文分析了常用的计算图像分数梯度的算法。用于定量评估所考虑的算法的措施是信噪比和有效平均梯度。在标准自然图像上获得的结果表明,在所有图像上的行为都有明显的趋势,并且在某些阶数的微分上具有优越的算法。对于低阶微分,两种度量都显示出相似的行为,而高阶微分导致对所考虑的算法的不同处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Overhead Analysis of a Bio-Inspired Routing over FANET A multispectral acquisition system for potential detection of Flavescence dorée AI-Blockchain Systems in Aerospace Engineering and Management: Review and Challenges A New Evaluation Method for Call Rating in Contact Center 2D Overlapping Range-Doppler Map Approach for Helicopter Classification by Using GRU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1