{"title":"Multifunctional Theranostic Contrast Agent for US/NIRF-Based Tumor Diagnosis and US-Triggered Combined Photothermal and Gene Therapy","authors":"Ling Wang, Hangqing Lu, Q. Gao, Chenyan Yuan, Fengan Ding, Jia Li, Dongsheng Zhang, Xilong Ou","doi":"10.2139/ssrn.3385801","DOIUrl":null,"url":null,"abstract":"Purpose: Encapsulated microbubbles (MBs) have been reported asnew theranostic carriers for simultaneous imaging and ultrasound (US)-triggered therapy. Here, we designed a dual-modality US/NIRF contrastagent and extended its applications from image contrast enhancement tocombined diagnosis and therapy with US-directed and site-specifictargeting.<br><br>Methods: Gold nanorods (AuNRs) resonant at 880 nm together with theNIR797 dye were first encapsulated in lipid-shelled MBs to constructfluorescent gold microbubbles (NIR797/AuMBs) via thin film hydration andmechanical shaking in the presence of sulfur hexafluoride (SF6) gas.Then, polyethylenimine (PEI)-DNA complexes were electrostaticallyconjugated onto the surface of the NIR797/AuMBs, forming theranosticencapsulated MBs (PEI-DNA/NIR797/AuMBs). The potential of the PEIDNA/NIR797/AuMBs for use as a dual-modality contrast enhancement agentwas evaluated in vitro and in vivo. The antitumor effect of US/NIR laserirradiation mediating double-fusion suicide gene and photothermal therapywas also investigated using Bel-7402 cells and xenografts.<br><br>Results: The developed theranostic AuMB complexes could not only provideexcellent US and NIRF imaging to detect tumors but also serve as anefficient US-triggered carrier for gene delivery and photothermalablation of tumors in xenografted nude mice. And US + laser exposuregroup showed a much higher rate of cell inhibition, apoptosis andnecrosis as well as a higher Bel-7402 xenograft inhibition rate than thesingle gene therapy or single exposure (US or laser) group.<br><br>Conclusions: PEI-DNA/NIR797/AuMBs would be of great value for providingmore comprehensive diagnostic information and to guide more accurate andeffective synergistic cancer therapy.","PeriodicalId":106645,"journal":{"name":"MatSciRN: Tissue Engineering (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MatSciRN: Tissue Engineering (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3385801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Encapsulated microbubbles (MBs) have been reported asnew theranostic carriers for simultaneous imaging and ultrasound (US)-triggered therapy. Here, we designed a dual-modality US/NIRF contrastagent and extended its applications from image contrast enhancement tocombined diagnosis and therapy with US-directed and site-specifictargeting.
Methods: Gold nanorods (AuNRs) resonant at 880 nm together with theNIR797 dye were first encapsulated in lipid-shelled MBs to constructfluorescent gold microbubbles (NIR797/AuMBs) via thin film hydration andmechanical shaking in the presence of sulfur hexafluoride (SF6) gas.Then, polyethylenimine (PEI)-DNA complexes were electrostaticallyconjugated onto the surface of the NIR797/AuMBs, forming theranosticencapsulated MBs (PEI-DNA/NIR797/AuMBs). The potential of the PEIDNA/NIR797/AuMBs for use as a dual-modality contrast enhancement agentwas evaluated in vitro and in vivo. The antitumor effect of US/NIR laserirradiation mediating double-fusion suicide gene and photothermal therapywas also investigated using Bel-7402 cells and xenografts.
Results: The developed theranostic AuMB complexes could not only provideexcellent US and NIRF imaging to detect tumors but also serve as anefficient US-triggered carrier for gene delivery and photothermalablation of tumors in xenografted nude mice. And US + laser exposuregroup showed a much higher rate of cell inhibition, apoptosis andnecrosis as well as a higher Bel-7402 xenograft inhibition rate than thesingle gene therapy or single exposure (US or laser) group.
Conclusions: PEI-DNA/NIR797/AuMBs would be of great value for providingmore comprehensive diagnostic information and to guide more accurate andeffective synergistic cancer therapy.