PeopleRank: Social Opportunistic Forwarding

Abderrahmen Mtibaa, M. May, C. Diot, M. Ammar
{"title":"PeopleRank: Social Opportunistic Forwarding","authors":"Abderrahmen Mtibaa, M. May, C. Diot, M. Ammar","doi":"10.1109/INFCOM.2010.5462261","DOIUrl":null,"url":null,"abstract":"In opportunistic networks, end-to-end paths between two communicating nodes are rarely available. In such situations, the nodes might still copy and forward messages to nodes that are more likely to meet the destination. The question is which forwarding algorithm offers the best trade off between cost (number of message replicas) and rate of successful message delivery. We address this challenge by developing the PeopleRank approach in which nodes are ranked using a tunable weighted social information. Similar to the PageRank idea, PeopleRank gives higher weight to nodes if they are socially connected to important other nodes of the network. We develop centralized and distributed variants for the computation of PeopleRank. We present an evaluation using real mobility traces of nodes and their social interactions to show that PeopleRank manages to deliver messages with near optimal success rate (close to Epidemic Routing) while reducing the number of message retransmissions by 50% compared to Epidemic Routing.","PeriodicalId":259639,"journal":{"name":"2010 Proceedings IEEE INFOCOM","volume":"2008 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"316","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Proceedings IEEE INFOCOM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOM.2010.5462261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 316

Abstract

In opportunistic networks, end-to-end paths between two communicating nodes are rarely available. In such situations, the nodes might still copy and forward messages to nodes that are more likely to meet the destination. The question is which forwarding algorithm offers the best trade off between cost (number of message replicas) and rate of successful message delivery. We address this challenge by developing the PeopleRank approach in which nodes are ranked using a tunable weighted social information. Similar to the PageRank idea, PeopleRank gives higher weight to nodes if they are socially connected to important other nodes of the network. We develop centralized and distributed variants for the computation of PeopleRank. We present an evaluation using real mobility traces of nodes and their social interactions to show that PeopleRank manages to deliver messages with near optimal success rate (close to Epidemic Routing) while reducing the number of message retransmissions by 50% compared to Epidemic Routing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PeopleRank:社会机会主义转发
在机会网络中,两个通信节点之间的端到端路径很少可用。在这种情况下,节点可能仍然会复制消息并将其转发给更有可能到达目的地的节点。问题是哪种转发算法在成本(消息副本数量)和成功消息传递率之间提供了最好的折衷。我们通过开发PeopleRank方法来解决这一挑战,该方法使用可调的加权社会信息对节点进行排名。与PageRank的想法类似,PeopleRank给那些与网络中重要的其他节点有社会联系的节点赋予更高的权重。我们为PeopleRank的计算开发了集中式和分布式变体。我们使用节点的真实移动轨迹及其社会互动进行了评估,以显示PeopleRank能够以接近最佳的成功率(接近流行病路由)传递消息,同时与流行病路由相比,将消息重传次数减少了50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Truthful Least-Priced-Path Routing in Opportunistic Spectrum Access Networks Overcoming Failures: Fault-tolerance and Logical Centralization in Clean-Slate Network Management Improving QoS in BitTorrent-like VoD Systems Lightweight Mutual Authentication and Ownership Transfer for RFID Systems Overhearing-aware Joint Routing and Rate Selection in Multi-hop Multi-rate UWB-based WPANs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1