Motor Imagery-Based Brain-Computer Interface Using Fusion of Deep Convolutional Neural Network with Wavelet Scattering Network

Keertana Nair, Gopikrishna P B, Rubell Marion Lincy G
{"title":"Motor Imagery-Based Brain-Computer Interface Using Fusion of Deep Convolutional Neural Network with Wavelet Scattering Network","authors":"Keertana Nair, Gopikrishna P B, Rubell Marion Lincy G","doi":"10.1109/INCET57972.2023.10169918","DOIUrl":null,"url":null,"abstract":"Brain-Computer Interface (BCI) is a system which is used to interact with the computer system and can be used to control different assistive devices by utilizing the brain signals such as Electroencephalography (EEG). Motor Imagery (MI) is considered one of the prominent fields of BCI systems which are based on EEG signals. These systems have the capability to restore motor ability in humans. Though a good deal of Machine Learning (ML) approaches were investigated in recent years, studies that explore BCI with Deep Learning methods or Wavelet Scattering Transforms have not been extensively used. Also, conventional classification methods show longer computational time and they are incapable of processing non-linear and non-stationary EEG signals. The proposed system aims to explore the area of a calibration-free or a subject-independent model by integrating Deep Convolutional Neural Network (CNN) with Wavelet Scattering Network by utilizing feature maps learned from both CNN and Scattering networks to tackle the non-linearity and non-stationarity of the EEG signals and thereby to improve the classification accuracy of the model to build a more robust and generalized MI-based BCI system. The proposed model outperforms the state-of-the-art techniques, achieving an accuracy of 87% and 93% on BCIC IV 2a and SMR-BCI datasets respectively.","PeriodicalId":403008,"journal":{"name":"2023 4th International Conference for Emerging Technology (INCET)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference for Emerging Technology (INCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCET57972.2023.10169918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Brain-Computer Interface (BCI) is a system which is used to interact with the computer system and can be used to control different assistive devices by utilizing the brain signals such as Electroencephalography (EEG). Motor Imagery (MI) is considered one of the prominent fields of BCI systems which are based on EEG signals. These systems have the capability to restore motor ability in humans. Though a good deal of Machine Learning (ML) approaches were investigated in recent years, studies that explore BCI with Deep Learning methods or Wavelet Scattering Transforms have not been extensively used. Also, conventional classification methods show longer computational time and they are incapable of processing non-linear and non-stationary EEG signals. The proposed system aims to explore the area of a calibration-free or a subject-independent model by integrating Deep Convolutional Neural Network (CNN) with Wavelet Scattering Network by utilizing feature maps learned from both CNN and Scattering networks to tackle the non-linearity and non-stationarity of the EEG signals and thereby to improve the classification accuracy of the model to build a more robust and generalized MI-based BCI system. The proposed model outperforms the state-of-the-art techniques, achieving an accuracy of 87% and 93% on BCIC IV 2a and SMR-BCI datasets respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度卷积神经网络与小波散射网络融合的运动图像脑机接口
脑机接口(brain - computer Interface, BCI)是一种用于与计算机系统交互的系统,可以利用脑电图(EEG)等脑信号来控制不同的辅助设备。运动想象(MI)是基于脑电信号的脑机接口(BCI)系统的一个重要领域。这些系统有能力恢复人类的运动能力。尽管近年来研究了大量的机器学习(ML)方法,但利用深度学习方法或小波散射变换探索脑机接口的研究尚未得到广泛应用。此外,传统的脑电信号分类方法计算时间较长,无法处理非线性和非平稳的脑电信号。该系统旨在将CNN与小波散射网络相结合,探索无标定或主体无关的模型领域,利用CNN和小波散射网络学习到的特征映射,解决脑电信号的非线性和非平稳性,从而提高模型的分类精度,构建一个更鲁棒和广义的基于mi的BCI系统。该模型优于最先进的技术,在BCIC IV 2a和SMR-BCI数据集上分别达到87%和93%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Learning-Based Solution for Differently-Abled Persons in The Society CARP-YOLO: A Detection Framework for Recognising and Counting Fish Species in a Cluttered Environment Implementation of Covid patient Health Monitoring System using IoT ESP Tuning to Reduce Auxiliary Power Consumption and Preserve Environment Real-time Recognition of Indian Sign Language using OpenCV and Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1