Wavelet-based unsupervised SAR image segmentation using hidden Markov tree models

Zhen Ye, Cheng-Chang Lu
{"title":"Wavelet-based unsupervised SAR image segmentation using hidden Markov tree models","authors":"Zhen Ye, Cheng-Chang Lu","doi":"10.1109/ICPR.2002.1048406","DOIUrl":null,"url":null,"abstract":"A new texture image segmentation algorithm, HMTseg, was recently proposed and applied successfully to supervised segmentation. In this paper, we extend the HMTseg algorithm to unsupervised SAR image segmentation. A multiscale Expectation Maximization (EM) algorithm is used to integrate the parameter estimation and classification into one. Because of the high levels of speckle noise present at fine scales in SAR images, segmentations on coarse scales are more reliable and accurate than those on fine scales. Based on the Hybrid Contextual Labelling Tree (HCLT) model, a weight factor /spl beta/, is introduced to increase the emphasis of context information. Ultimately, a Bayesian interscale and intrascale fusion algorithm is applied to refine raw segmentations.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

A new texture image segmentation algorithm, HMTseg, was recently proposed and applied successfully to supervised segmentation. In this paper, we extend the HMTseg algorithm to unsupervised SAR image segmentation. A multiscale Expectation Maximization (EM) algorithm is used to integrate the parameter estimation and classification into one. Because of the high levels of speckle noise present at fine scales in SAR images, segmentations on coarse scales are more reliable and accurate than those on fine scales. Based on the Hybrid Contextual Labelling Tree (HCLT) model, a weight factor /spl beta/, is introduced to increase the emphasis of context information. Ultimately, a Bayesian interscale and intrascale fusion algorithm is applied to refine raw segmentations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于隐马尔科夫树模型的小波无监督SAR图像分割
最近提出了一种新的纹理图像分割算法HMTseg,并成功地应用于监督分割。本文将HMTseg算法扩展到无监督SAR图像分割中。采用多尺度期望最大化(EM)算法,将参数估计与分类相结合。由于SAR图像在精细尺度上存在高水平的斑点噪声,因此在粗尺度上的分割比精细尺度上的分割更可靠和准确。在混合上下文标记树(HCLT)模型的基础上,引入了权重因子/spl beta/来增加上下文信息的强调程度。最后,采用贝叶斯尺度间和尺度内融合算法对原始分割进行细化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pattern recognition for humanitarian de-mining Data clustering using evidence accumulation Facial expression recognition using pseudo 3-D hidden Markov models Speeding up SVM decision based on mirror points Real-time tracking and estimation of plane pose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1