Radar pulse train parameter estimation and tracking using neural networks

G. Noone
{"title":"Radar pulse train parameter estimation and tracking using neural networks","authors":"G. Noone","doi":"10.1109/ANNES.1995.499448","DOIUrl":null,"url":null,"abstract":"The post-deinterleaving radar pulse train problem requires estimation of the parameters and tracking of the individual pulse trains. A simple recurrent backpropagation neural network is used based on a simple state space time series formulation of the radar problem. The network incorporates a novel heuristic adaptive error threshold that allows simultaneously good tracking and parameter estimating abilities. Two simple but revealing examples are presented to show how the network is robust to missing and spurious pulses, as well as multiple level staggers with discontinuous mode changes.","PeriodicalId":123427,"journal":{"name":"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANNES.1995.499448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The post-deinterleaving radar pulse train problem requires estimation of the parameters and tracking of the individual pulse trains. A simple recurrent backpropagation neural network is used based on a simple state space time series formulation of the radar problem. The network incorporates a novel heuristic adaptive error threshold that allows simultaneously good tracking and parameter estimating abilities. Two simple but revealing examples are presented to show how the network is robust to missing and spurious pulses, as well as multiple level staggers with discontinuous mode changes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的雷达脉冲序列参数估计与跟踪
后交错雷达脉冲串问题需要对脉冲串进行参数估计和跟踪。基于雷达问题的简单状态空间时间序列公式,采用简单的递归反向传播神经网络。该网络采用了一种新颖的启发式自适应误差阈值,同时具有良好的跟踪和参数估计能力。给出了两个简单但有启发意义的例子来说明网络如何对缺失脉冲和伪脉冲以及具有不连续模式变化的多电平交错具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bandsaw diagnostics by neurocomputing-two are better than one! Increased reliability by effective use of sensor information: a shop floor application of sensor-aided robotic handling Convergent unlearning algorithm for the Hopfield neural network Neural network approaches to cognitive mapping Integrating vision processing and natural language processing with a clinical application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1