A Binomial Heap Extractor for Automatic Keyword Extraction

D. V. Paul, J. Pawar
{"title":"A Binomial Heap Extractor for Automatic Keyword Extraction","authors":"D. V. Paul, J. Pawar","doi":"10.1109/SAPIENCE.2016.7684154","DOIUrl":null,"url":null,"abstract":"Automatic Extraction of Keywords using Frequent Itemsets (AEKFI) is a new technique for keyword extraction which integrates adjacency of location of words within the document to automatically select the most discriminative words without using a corpus. This paper introduces a novel Binomial Heap Approach based AEKFI for document summarization. Binomial heap does keyword extraction using binomial minimum heap operations. AEKFI provides flexibility to select either the set of keywords from a given document or user specified number of keywords. AEKFI does not impose any restriction on the length of keywords being extracted. Demonstration of Binomial Heap Extractor has been made and has been found efficient in reducing the time complexity O (n2) of existing approaches to O (n log n). Experimental results prove the advantage of Binomial Minimum Heap based AEKFI over other keyword extraction tools.","PeriodicalId":340137,"journal":{"name":"2016 International Conference on Data Mining and Advanced Computing (SAPIENCE)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Data Mining and Advanced Computing (SAPIENCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAPIENCE.2016.7684154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Automatic Extraction of Keywords using Frequent Itemsets (AEKFI) is a new technique for keyword extraction which integrates adjacency of location of words within the document to automatically select the most discriminative words without using a corpus. This paper introduces a novel Binomial Heap Approach based AEKFI for document summarization. Binomial heap does keyword extraction using binomial minimum heap operations. AEKFI provides flexibility to select either the set of keywords from a given document or user specified number of keywords. AEKFI does not impose any restriction on the length of keywords being extracted. Demonstration of Binomial Heap Extractor has been made and has been found efficient in reducing the time complexity O (n2) of existing approaches to O (n log n). Experimental results prove the advantage of Binomial Minimum Heap based AEKFI over other keyword extraction tools.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于自动关键字提取的二项堆提取器
基于频繁项集的关键词自动提取(AEKFI)是一种新的关键词提取技术,它在不使用语料库的情况下,结合词在文档中的位置邻接性,自动选择最具判别性的词。介绍了一种新的基于AEKFI的二项堆方法用于文档摘要。二项堆使用二项最小堆操作进行关键字提取。AEKFI提供了从给定文档或用户指定数量的关键字中选择关键字集的灵活性。AEKFI对提取的关键字长度没有任何限制。对二项堆提取器进行了演示,并发现它可以有效地将现有方法的时间复杂度从O (n2)降低到O (n log n)。实验结果证明了基于二项最小堆的AEKFI比其他关键字提取工具具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GP-GPU based high-performance test equipment for debugging radar digital units An efficient video Steganography technique for secured data transmission Modified autonomy oriented computing based network immunization by considering betweenness centrality Methods to detect different types of outliers A study of cloud computing environments for High Performance applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1