Differential private trajectory protection of moving objects

Roland Assam, Marwan Hassani, T. Seidl
{"title":"Differential private trajectory protection of moving objects","authors":"Roland Assam, Marwan Hassani, T. Seidl","doi":"10.1145/2442968.2442977","DOIUrl":null,"url":null,"abstract":"Location privacy and security of spatio-temporal data has come under high scrutiny in the past years. This has rekindled enormous research interest. So far, most of the research studies that attempt to address location privacy are based on the k-Anonymity privacy paradigm. In this paper, we propose a novel technique to ensure location privacy in stream and non-stream mobility data using differential privacy. We portray incoming stream or non-stream mobility data emanating from GPS-enabled devices as a differential privacy problem and rigorously define a spatio-temporal sensitivity function for a trajectory metric space. Privacy is achieved through path perturbation in both the space and time domain. In addition, we introduce a new notion of Nearest Neighbor Anchor Resource to add more contextual meaning in the face of uncertainty to the perturbed trajectory path. Unlike k-Anonymity techniques that require more mobile objects to achieve strong anonymity; we show that our approach provides stronger privacy even for a single moving mobile object, outliers or mobile objects in sparsely populated regions.","PeriodicalId":190366,"journal":{"name":"International Workshop on GeoStreaming","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on GeoStreaming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2442968.2442977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Location privacy and security of spatio-temporal data has come under high scrutiny in the past years. This has rekindled enormous research interest. So far, most of the research studies that attempt to address location privacy are based on the k-Anonymity privacy paradigm. In this paper, we propose a novel technique to ensure location privacy in stream and non-stream mobility data using differential privacy. We portray incoming stream or non-stream mobility data emanating from GPS-enabled devices as a differential privacy problem and rigorously define a spatio-temporal sensitivity function for a trajectory metric space. Privacy is achieved through path perturbation in both the space and time domain. In addition, we introduce a new notion of Nearest Neighbor Anchor Resource to add more contextual meaning in the face of uncertainty to the perturbed trajectory path. Unlike k-Anonymity techniques that require more mobile objects to achieve strong anonymity; we show that our approach provides stronger privacy even for a single moving mobile object, outliers or mobile objects in sparsely populated regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移动物体的微分私有轨迹保护
在过去的几年中,时空数据的位置隐私和安全性受到了高度关注。这重新点燃了巨大的研究兴趣。到目前为止,大多数试图解决位置隐私的研究都是基于k-匿名隐私范式。在本文中,我们提出了一种利用差分隐私来保证流和非流移动数据位置隐私的新技术。我们将来自启用gps的设备的传入流或非流移动数据描述为差分隐私问题,并严格定义轨迹度量空间的时空灵敏度函数。隐私是通过空间和时间域的路径扰动来实现的。此外,我们引入了最近邻锚点资源的新概念,在面对不确定性时为受扰动的轨迹路径增加更多的上下文含义。不像k-匿名技术,需要更多的移动对象来实现强匿名;我们表明,我们的方法甚至为单个移动的移动对象、离群值或人口稀少地区的移动对象提供了更强的隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clustering spatial data streams for targeted alerting in disaster response ADTOS: arrival departure tradeoff optimization system Mining robust neighborhoods for quality control of sensor data EHSTC: an enhanced method for semantic trajectory compression Towards window stream queries over continuous phenomena
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1