{"title":"AUV-Aided Localization for Underwater Sensor Networks","authors":"M. Erol, L. Vieira, M. Gerla","doi":"10.1109/WASA.2007.143","DOIUrl":null,"url":null,"abstract":"We propose a localization scheme for underwater acoustic sensor networks (UWSN) that does not require a priori infra-structure or synchronization between nodes. An autonomous underwater vehicle (AUV) aids in localizing the sensor nodes while roaming across the underwater sensor field. The objectives of this paper are to describe how to localize nodes using AUV and to describe the tradeoffs involved, i.e. ratio of localized nodes and localization accuracy. We show that localization success improves as the duration of the AUV localization process increases. In addition, we investigated localization using two methods, bounding-box and triangulation. The former achieves a higher localization ratio but with a higher error. In certain scenarios, we achieved 100% nodes localized with 3% error.","PeriodicalId":316831,"journal":{"name":"International Conference on Wireless Algorithms, Systems and Applications (WASA 2007)","volume":"433 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"223","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Wireless Algorithms, Systems and Applications (WASA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WASA.2007.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 223
Abstract
We propose a localization scheme for underwater acoustic sensor networks (UWSN) that does not require a priori infra-structure or synchronization between nodes. An autonomous underwater vehicle (AUV) aids in localizing the sensor nodes while roaming across the underwater sensor field. The objectives of this paper are to describe how to localize nodes using AUV and to describe the tradeoffs involved, i.e. ratio of localized nodes and localization accuracy. We show that localization success improves as the duration of the AUV localization process increases. In addition, we investigated localization using two methods, bounding-box and triangulation. The former achieves a higher localization ratio but with a higher error. In certain scenarios, we achieved 100% nodes localized with 3% error.