Генезис магм с позиции горячей гетерогенной аккреции Земли

V. S. Shkodzinskiy
{"title":"Генезис магм с позиции горячей гетерогенной аккреции Земли","authors":"V. S. Shkodzinskiy","doi":"10.34078/1814-0998-2021-2-41-49","DOIUrl":null,"url":null,"abstract":"The obtained numerous proofs of hot heterogeneous accretion of the Earth lead to a fundamentally new solution of the magma genesis problem. According to these data, in the course of the silicate mantle accretion, the global magmatic ocean emerged under the impact heat emission. Its bottom part crystallized and fractionated as a result of the pressure increase of the upper parts being formed. Cumulates formed the ultrabasic mantle; residual melts, the magmatic ocean. The increase in ocean temperature and depth caused the evolution of bottom residual melts from acidic to ultrabasic, the appearance of corresponding layers in the ocean, and the reverse geothermal gradient in the mantle. The top-down cooling and crystallization of the ocean, 3.8 billion years ago, Early Precambrian crystal complexes, acidic crust, and the lithosphere of ancient platforms were formed. The separation of residual melts from various layers determined the evolution of magmatism from acidic to alkaline-ultramafic and kimberlite. Heating of the mantle by a high-temperature core resulted in the appearance of a direct geothermal gradient at the end of the Proterozoic, convection in the mantle, and modern geodynamic environments. In the latter, magmas are formed by the frictional and decompression remelting of the magmatic ocean differentiates.","PeriodicalId":341033,"journal":{"name":"Bulletin of the North-East Science Center","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the North-East Science Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34078/1814-0998-2021-2-41-49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The obtained numerous proofs of hot heterogeneous accretion of the Earth lead to a fundamentally new solution of the magma genesis problem. According to these data, in the course of the silicate mantle accretion, the global magmatic ocean emerged under the impact heat emission. Its bottom part crystallized and fractionated as a result of the pressure increase of the upper parts being formed. Cumulates formed the ultrabasic mantle; residual melts, the magmatic ocean. The increase in ocean temperature and depth caused the evolution of bottom residual melts from acidic to ultrabasic, the appearance of corresponding layers in the ocean, and the reverse geothermal gradient in the mantle. The top-down cooling and crystallization of the ocean, 3.8 billion years ago, Early Precambrian crystal complexes, acidic crust, and the lithosphere of ancient platforms were formed. The separation of residual melts from various layers determined the evolution of magmatism from acidic to alkaline-ultramafic and kimberlite. Heating of the mantle by a high-temperature core resulted in the appearance of a direct geothermal gradient at the end of the Proterozoic, convection in the mantle, and modern geodynamic environments. In the latter, magmas are formed by the frictional and decompression remelting of the magmatic ocean differentiates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地球热源异位吸积的起源
所获得的地球热非均质吸积的大量证据为岩浆成因问题提供了一个全新的解决方案。根据这些数据,在硅酸盐地幔增生过程中,全球岩浆海洋在撞击热释放的作用下出现。由于上部的压力增加而形成的底部结晶和分馏。堆积形成超基性地幔;残余融化,岩浆海洋。海洋温度和深度的增加导致海底残余熔体由酸性向超基性演化,海洋中相应层的出现,以及地幔的反向地温梯度。38亿年前,海洋自上而下的冷却结晶,形成了早前寒武纪的结晶复合体、酸性地壳和古台地岩石圈。各层残余熔体的分离决定了岩浆活动从酸性到碱性-超镁铁质和金伯利岩的演化过程。高温地核对地幔的加热导致了元古代末期直接地热梯度的出现,地幔中的对流,以及现代地球动力学环境。在后者,岩浆是由岩浆洋分异的摩擦和减压重熔形成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Исследование древнекорякского погребения С. П. Ефимовым на мысе Братьев в 1976 году (залив Бабушкина, Северное Приохотье) Трансформации геофизических полей и геолого-геофизические признаки золото-кварцевого оруденения на примере Средне-Урканской перспективной площади (Амурская область) Vegetation Response to the Climate Change in Polar Chukotka from 2.510-2.554 Ma BP Харгинский золотороссыпной центр Приамурской золотоносной провинции К дискуссии по проблеме летоисчисления города Магадана
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1