Region Classification with Markov Field Aspect Models

J. Verbeek, B. Triggs
{"title":"Region Classification with Markov Field Aspect Models","authors":"J. Verbeek, B. Triggs","doi":"10.1109/CVPR.2007.383098","DOIUrl":null,"url":null,"abstract":"Considerable advances have been made in learning to recognize and localize visual object classes. Simple bag-of-feature approaches label each pixel or patch independently. More advanced models attempt to improve the coherence of the labellings by introducing some form of inter-patch coupling: traditional spatial models such as MRF's provide crisper local labellings by exploiting neighbourhood-level couplings, while aspect models such as PLSA and LDA use global relevance estimates (global mixing proportions for the classes appearing in the image) to shape the local choices. We point out that the two approaches are complementary, combining them to produce aspect-based spatial field models that outperform both approaches. We study two spatial models: one based on averaging over forests of minimal spanning trees linking neighboring image regions, the other on an efficient chain-based Expectation Propagation method for regular 8-neighbor Markov random fields. The models can be trained using either patch-level labels or image-level keywords. As input features they use factored observation models combining texture, color and position cues. Experimental results on the MSR Cambridge data sets show that combining spatial and aspect models significantly improves the region-level classification accuracy. In fact our models trained with image-level labels outperform PLSA trained with pixel-level ones.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"248","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 248

Abstract

Considerable advances have been made in learning to recognize and localize visual object classes. Simple bag-of-feature approaches label each pixel or patch independently. More advanced models attempt to improve the coherence of the labellings by introducing some form of inter-patch coupling: traditional spatial models such as MRF's provide crisper local labellings by exploiting neighbourhood-level couplings, while aspect models such as PLSA and LDA use global relevance estimates (global mixing proportions for the classes appearing in the image) to shape the local choices. We point out that the two approaches are complementary, combining them to produce aspect-based spatial field models that outperform both approaches. We study two spatial models: one based on averaging over forests of minimal spanning trees linking neighboring image regions, the other on an efficient chain-based Expectation Propagation method for regular 8-neighbor Markov random fields. The models can be trained using either patch-level labels or image-level keywords. As input features they use factored observation models combining texture, color and position cues. Experimental results on the MSR Cambridge data sets show that combining spatial and aspect models significantly improves the region-level classification accuracy. In fact our models trained with image-level labels outperform PLSA trained with pixel-level ones.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于马尔可夫场方面模型的区域分类
在学习识别和定位视觉对象类方面已经取得了相当大的进展。简单的特征袋方法独立标记每个像素或patch。更先进的模型试图通过引入某种形式的斑块间耦合来提高标记的一致性:传统的空间模型(如MRF)通过利用邻域级耦合提供更清晰的局部标记,而方面模型(如PLSA和LDA)使用全局相关性估计(图像中出现的类的全局混合比例)来形成局部选择。我们指出,这两种方法是互补的,将它们结合起来可以产生优于两种方法的基于方面的空间场模型。我们研究了两种空间模型:一种是基于连接相邻图像区域的最小生成树的森林平均,另一种是基于正则8邻马尔可夫随机场的高效链期望传播方法。模型可以使用补丁级标签或图像级关键字进行训练。作为输入特征,他们使用结合纹理、颜色和位置线索的因子观察模型。在MSR剑桥数据集上的实验结果表明,结合空间模型和方面模型显著提高了区域级分类的精度。事实上,我们用图像级标签训练的模型优于用像素级标签训练的PLSA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Region and Edge Cues for Image Segmentation in a Probabilistic Gaussian Mixture Framework Fast Human Pose Estimation using Appearance and Motion via Multi-Dimensional Boosting Regression Enhanced Level Building Algorithm for the Movement Epenthesis Problem in Sign Language Recognition Change Detection in a 3-d World Layered Graph Match with Graph Editing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1