Contrast-enhanced microscopic imaging of Malaria parasites

J. Somasekar, B. E. Reddy
{"title":"Contrast-enhanced microscopic imaging of Malaria parasites","authors":"J. Somasekar, B. E. Reddy","doi":"10.1109/ICCIC.2014.7238439","DOIUrl":null,"url":null,"abstract":"This paper proposes an efficient algorithm for contrast enhancement to preserve the essential details of microscopic images of malaria infected blood using Gamma Equalization (GE). The central idea of this method is first, to convert the input color blood image into gray scale one, and then to calculate the range value for the γth order image of a gray scale image. The look-up-table (LUT) values are calculated and the gray scale image pixel intensity values are converted into LUT values which yield final contrast-enhanced image by retaining the essential details. We tested different values of gamma (γ). The value of γ = 0.8 yields maximum contrast enhanced image, which is very useful for image analysis and a computer aided diagnostic system for malaria. On comparison, GE is found to be better than Histogram equalization (HE), Imadjust (IA) and Contrast-limited adaptive histogram equalization (CLAHE) for microscopic blood images of malaria by using image quality measures: Absolute mean Brightness error (AMBE), Entropy and average luminance.","PeriodicalId":187874,"journal":{"name":"2014 IEEE International Conference on Computational Intelligence and Computing Research","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Computational Intelligence and Computing Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIC.2014.7238439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper proposes an efficient algorithm for contrast enhancement to preserve the essential details of microscopic images of malaria infected blood using Gamma Equalization (GE). The central idea of this method is first, to convert the input color blood image into gray scale one, and then to calculate the range value for the γth order image of a gray scale image. The look-up-table (LUT) values are calculated and the gray scale image pixel intensity values are converted into LUT values which yield final contrast-enhanced image by retaining the essential details. We tested different values of gamma (γ). The value of γ = 0.8 yields maximum contrast enhanced image, which is very useful for image analysis and a computer aided diagnostic system for malaria. On comparison, GE is found to be better than Histogram equalization (HE), Imadjust (IA) and Contrast-limited adaptive histogram equalization (CLAHE) for microscopic blood images of malaria by using image quality measures: Absolute mean Brightness error (AMBE), Entropy and average luminance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
疟疾寄生虫的对比增强显微镜成像
本文提出了一种有效的对比度增强算法,以保留疟疾感染血液显微图像的基本细节。该方法的核心思想是首先将输入的彩色血液图像转换为灰度图像,然后计算灰度图像的γ阶图像的范围值。计算查找表(LUT)值,并将灰度图像像素强度值转换为保留基本细节的最终对比度增强图像的LUT值。我们测试了不同的γ (γ)值。γ = 0.8的值产生最大对比度增强图像,对图像分析和疟疾计算机辅助诊断系统非常有用。通过对图像质量度量:绝对平均亮度误差(AMBE)、熵和平均亮度进行比较,发现GE在疟疾显微血液图像上优于直方图均衡化(HE)、Imadjust (IA)和对比度有限的自适应直方图均衡化(CLAHE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic generation control of three area hydro-thermal power systems with electric and mechanical governor Analysis of AQM router of network supporting multiple TCP flows Data analytic engineering and its application in earthquake engineering: An overview Comparative analysis of digital image stabilization by using empirical mode decomposition methods Analytical approach towards packet drop attacks in mobile ad-hoc networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1