Toxicity of Halogen, Sulfur and Chlorinated Aromatic Compounds: A Quantitative-Structure-Toxicity-Relationship (QSTR)

Ashutosh Gupta, A. Chakraborty, S. Giri, V. Subramanian, P. Chattaraj
{"title":"Toxicity of Halogen, Sulfur and Chlorinated Aromatic Compounds: A Quantitative-Structure-Toxicity-Relationship (QSTR)","authors":"Ashutosh Gupta, A. Chakraborty, S. Giri, V. Subramanian, P. Chattaraj","doi":"10.4018/ijcce.2011010105","DOIUrl":null,"url":null,"abstract":"In this paper, quantitative–structure–toxicity–relationship (QSTR) models are developed for predicting the toxicity of halogen, sulfur and chlorinated aromatic compounds. Two sets of compounds, containing mainly halogen and sulfur inorganic compounds in the first set and chlorinated aromatic compounds in the second, are investigated for their toxicity level with the aid of the conceptual Density Functional Theory (DFT) method. Both sets are tested with the conventional density functional descriptors and with a newly proposed net electrophilicity descriptor. Associated R2, R2CV and R2adj values reveal that in the first set, the proposed net electrophilicity descriptor (??±) provides the best result, whereas in the second set, electrophilicity index (?) and a newly proposed descriptor, net electrophilicity index (??±) provide a comparable performance. The potential of net electrophilicity index to act as descriptor in development of QSAR model is also discussed.","PeriodicalId":132974,"journal":{"name":"Int. J. Chemoinformatics Chem. Eng.","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Chemoinformatics Chem. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcce.2011010105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, quantitative–structure–toxicity–relationship (QSTR) models are developed for predicting the toxicity of halogen, sulfur and chlorinated aromatic compounds. Two sets of compounds, containing mainly halogen and sulfur inorganic compounds in the first set and chlorinated aromatic compounds in the second, are investigated for their toxicity level with the aid of the conceptual Density Functional Theory (DFT) method. Both sets are tested with the conventional density functional descriptors and with a newly proposed net electrophilicity descriptor. Associated R2, R2CV and R2adj values reveal that in the first set, the proposed net electrophilicity descriptor (??±) provides the best result, whereas in the second set, electrophilicity index (?) and a newly proposed descriptor, net electrophilicity index (??±) provide a comparable performance. The potential of net electrophilicity index to act as descriptor in development of QSAR model is also discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卤素、硫和氯化芳香族化合物的毒性:数量-结构-毒性关系(QSTR)
本文建立了定量的 -结构- -毒性-关系(QSTR)模型来预测卤素、硫和氯代芳香族化合物的毒性。本文利用密度泛函理论(DFT)方法研究了两组化合物的毒性水平,第一组化合物主要含卤素和硫无机化合物,第二组化合物主要含氯化芳香族化合物。用传统的密度泛函描述符和新提出的净亲电性描述符对这两组进行了测试。相关的R2、R2CV和R2adj值显示,在第一组中,提出的净亲电性描述符(? ±)提供了最好的结果,而在第二组中,亲电性指数(?)和新提出的描述符,净亲电性指数(? ±)提供了相当的性能。本文还讨论了净亲电性指数作为描述符在QSAR模型发展中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preparation and Characterization of Chitosan - Double Walled Carbon Nanotubes Hydrogels Fukui Indices as QSAR Model Descriptors: The Case of the Anti-HIV Activity of 1-2-[(Hydroxyethoxy) Methyl]-6-(Phenylthio) Thymine Derivatives Rice Straw Extracted Cellulose Biocompatible Nanofiber Various Rate Law Orders Through Hydrolysis of Sodium Borohydride Over Co-M-Zr-B (M= Cr, Mo and W) Nano Catalyst The Structure, Topological, and Functional Dimension of Biomolecules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1