MediAlly: A provenance-aware remote health monitoring middleware

A. Chowdhury, B. Falchuk, Archan Misra
{"title":"MediAlly: A provenance-aware remote health monitoring middleware","authors":"A. Chowdhury, B. Falchuk, Archan Misra","doi":"10.1109/PERCOM.2010.5466985","DOIUrl":null,"url":null,"abstract":"This paper presents MediAlly, a middleware for supporting energy-efficient, long-term remote health monitoring. Data is collected using physiological sensors and transported back to the middleware using a smart phone. The key to MediAlly's energy efficient operations lies in the adoption of an Activity Triggered Deep Monitoring (ATDM) paradigm, where data collection episodes are triggered only when the subject is determined to possess a specified context. MediAlly supports the on-demand collection of contextual provenance using a novel low-overhead provenance collection sub-system. The behaviour of this sub-system is configured using an application-defined context composition graph. The resulting provenance stream provides valuable insight while interpreting the ‘episodic’ sensor data streams. The paper also describes our prototype implementation of MediAlly using commercially available devices.","PeriodicalId":207774,"journal":{"name":"2010 IEEE International Conference on Pervasive Computing and Communications (PerCom)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Pervasive Computing and Communications (PerCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOM.2010.5466985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

This paper presents MediAlly, a middleware for supporting energy-efficient, long-term remote health monitoring. Data is collected using physiological sensors and transported back to the middleware using a smart phone. The key to MediAlly's energy efficient operations lies in the adoption of an Activity Triggered Deep Monitoring (ATDM) paradigm, where data collection episodes are triggered only when the subject is determined to possess a specified context. MediAlly supports the on-demand collection of contextual provenance using a novel low-overhead provenance collection sub-system. The behaviour of this sub-system is configured using an application-defined context composition graph. The resulting provenance stream provides valuable insight while interpreting the ‘episodic’ sensor data streams. The paper also describes our prototype implementation of MediAlly using commercially available devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MediAlly:支持来源的远程运行状况监视中间件
本文介绍了MediAlly,一种支持节能、长期远程健康监测的中间件。使用生理传感器收集数据,并使用智能手机将数据传输回中间件。MediAlly节能操作的关键在于采用活动触发深度监测(ATDM)模式,只有在确定主体具有特定上下文时才触发数据收集事件。MediAlly使用新颖的低开销的来源收集子系统支持上下文来源的按需收集。该子系统的行为使用应用程序定义的上下文组合图进行配置。由此产生的来源流在解释“情景”传感器数据流时提供了有价值的见解。本文还描述了我们使用商用设备的MediAlly原型实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sell your experiences: a market mechanism based incentive for participatory sensing Negotiate power and performance in the reality of RFID systems Decomposing power measurements for mobile devices Tuning to your position: FM radio based indoor localization with spontaneous recalibration Capture, recognition, and visualization of human semantic interactions in meetings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1