Mapping of ocean sediments, by networks of parallel interpolating units

A. Caiti, T. Parisini
{"title":"Mapping of ocean sediments, by networks of parallel interpolating units","authors":"A. Caiti, T. Parisini","doi":"10.1109/ICNN.1991.163355","DOIUrl":null,"url":null,"abstract":"A method for interpolating sparse measurements of ocean sediment properties by means of a network of parallel computational units is proposed. The network is able to generate a continuous mapping. of sediment properties as a function of x-y-z position, where z is the depth in the sediment, using a generalized radial basis function expansion. Advantages and disadvantages of the method are discussed, both from a physical and a computational viewpoint. An example with sediment density data obtained from sparse core measurements in a region of the Mediterranean sea is presented.<<ETX>>","PeriodicalId":296300,"journal":{"name":"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1991.163355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A method for interpolating sparse measurements of ocean sediment properties by means of a network of parallel computational units is proposed. The network is able to generate a continuous mapping. of sediment properties as a function of x-y-z position, where z is the depth in the sediment, using a generalized radial basis function expansion. Advantages and disadvantages of the method are discussed, both from a physical and a computational viewpoint. An example with sediment density data obtained from sparse core measurements in a region of the Mediterranean sea is presented.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过平行插值单元网络绘制海洋沉积物图
提出了一种利用并行计算单元网络插值稀疏测量海洋沉积物特性的方法。该网络能够生成连续映射。将泥沙性质作为x-y-z位置的函数,其中z为泥沙的深度,采用广义径向基函数展开。从物理和计算的角度讨论了该方法的优缺点。本文给出了地中海某地区稀疏岩心测量获得的沉积物密度数据的一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of neural network and conventional techniques for sonar signal discrimination The potential of a neural network based sonar system in classifying fish Neural network for underwater target detection Design of an intelligent control system for remotely operated vehicles All neural network sonar discrimination system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1