On Monte Carlo methods for estimating the fisher information matrix in difficult problems

J. Spall
{"title":"On Monte Carlo methods for estimating the fisher information matrix in difficult problems","authors":"J. Spall","doi":"10.1109/CISS.2009.5054816","DOIUrl":null,"url":null,"abstract":"The Fisher information matrix summarizes the amount of information in a set of data relative to the quantities of interest and forms the basis for the Cramér-Rao (lower) bound on the uncertainty in an estimate. There are many applications of the information matrix in modeling, systems analysis, and estimation. This paper presents a resampling-based method for computing the information matrix together with some new theory related to efficient implementation. We show how certain properties associated with the likelihood function and the error in the estimates of the Hessian matrix can be exploited to improve the accuracy of the Monte Carlo-based estimate of the information matrix.","PeriodicalId":433796,"journal":{"name":"2009 43rd Annual Conference on Information Sciences and Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 43rd Annual Conference on Information Sciences and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2009.5054816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Fisher information matrix summarizes the amount of information in a set of data relative to the quantities of interest and forms the basis for the Cramér-Rao (lower) bound on the uncertainty in an estimate. There are many applications of the information matrix in modeling, systems analysis, and estimation. This paper presents a resampling-based method for computing the information matrix together with some new theory related to efficient implementation. We show how certain properties associated with the likelihood function and the error in the estimates of the Hessian matrix can be exploited to improve the accuracy of the Monte Carlo-based estimate of the information matrix.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
困难问题中fisher信息矩阵估计的蒙特卡罗方法
Fisher信息矩阵总结了一组数据中相对于感兴趣的数量的信息量,并构成了估计中不确定性的cram - rao(下)界的基础。信息矩阵在建模、系统分析和评估中有许多应用。本文提出了一种基于重采样的信息矩阵计算方法,并提出了一些有效实现的新理论。我们展示了如何利用与似然函数和黑森矩阵估计中的误差相关的某些属性来提高基于蒙特卡罗的信息矩阵估计的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Molecular recognition as an information channel: The role of conformational changes Extrinsic tree decoding Message transmission and state estimation over Gaussian broadcast channels Iteratively re-weighted least squares for sparse signal reconstruction from noisy measurements Speech enhancement using the multistage Wiener filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1