Tracking of NO2 and SO2 trace gases emission from Thermal Power Plants in Tamil Nadu using Sentinel 5P Tropomi Satellite with observations from CPCB CAAQM station

M. Anitha, L. S. Kumar
{"title":"Tracking of NO2 and SO2 trace gases emission from Thermal Power Plants in Tamil Nadu using Sentinel 5P Tropomi Satellite with observations from CPCB CAAQM station","authors":"M. Anitha, L. S. Kumar","doi":"10.1109/IConSCEPT57958.2023.10170014","DOIUrl":null,"url":null,"abstract":"In India, where coal-fed Thermal Power Plants (TPPs) have been recognized as the country’s single largest source of air pollution, exposure to such air pollution is the biggest threat to the country’s environmental health. Rapid economic growth and rising electricity consumption have led to a sharp rise in NO2 and SO2 emissions from the power sector in India. This paper investigates the emission sources of NO2 and SO2 gases using Sentinel 5P TROPOMI satellite data for the Tamil Nadu region from 2019 to 2022. The monthly mean variation of TROPOMI data is analyzed over the Vallur and North Chennai TPP locations along with the Central Pollution Control Board’s (CPCB’s) Continuous Ambient Air Quality Monitoring Station (CAAQMS) data at Manali. The Google Earth Engine (GEE) platform is utilized to track and analyze trace gases.","PeriodicalId":240167,"journal":{"name":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IConSCEPT57958.2023.10170014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In India, where coal-fed Thermal Power Plants (TPPs) have been recognized as the country’s single largest source of air pollution, exposure to such air pollution is the biggest threat to the country’s environmental health. Rapid economic growth and rising electricity consumption have led to a sharp rise in NO2 and SO2 emissions from the power sector in India. This paper investigates the emission sources of NO2 and SO2 gases using Sentinel 5P TROPOMI satellite data for the Tamil Nadu region from 2019 to 2022. The monthly mean variation of TROPOMI data is analyzed over the Vallur and North Chennai TPP locations along with the Central Pollution Control Board’s (CPCB’s) Continuous Ambient Air Quality Monitoring Station (CAAQMS) data at Manali. The Google Earth Engine (GEE) platform is utilized to track and analyze trace gases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用Sentinel 5P Tropomi卫星和CPCB CAAQM站观测数据跟踪泰米尔纳德邦热电厂NO2和SO2微量气体排放
在印度,燃煤火力发电厂(TPPs)被认为是该国最大的单一空气污染源,暴露在这种空气污染中是对该国环境健康的最大威胁。快速的经济增长和不断上升的用电量导致印度电力部门的二氧化氮和二氧化硫排放量急剧上升。利用Sentinel 5P TROPOMI卫星数据,研究了2019 - 2022年泰米尔纳德邦地区NO2和SO2气体的排放源。分析了瓦卢尔和北钦奈TPP地点的TROPOMI数据的月平均变化,以及中央污染控制委员会(CPCB)在马纳利的连续环境空气质量监测站(CAAQMS)数据。谷歌地球引擎(GEE)平台用于跟踪和分析痕量气体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Three Port Full Bridge PFC Converter for Hybrid AC/DC/DC System with Fuzzy Logic Control ESH: A Non-Monotonic Activation Function For Image Classification Image Classification using Quantum Convolutional Neural Network Machine Learning Based Predictive Model for Intrusion Detection EV Sahayak: Android Assistance App for Electric Vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1