Datapath fault tolerance for parallel accelerators

James J. Davis, P. Cheung
{"title":"Datapath fault tolerance for parallel accelerators","authors":"James J. Davis, P. Cheung","doi":"10.1109/FPT.2013.6718389","DOIUrl":null,"url":null,"abstract":"While we reap the benefits of process scaling in terms of transistor density and switching speed, consideration must be given to the negative effects it causes: increased variation, degradation and fault susceptibility. Above device level, such phenomena and the faults they induce can lead to reduced yield, decreased system reliability and, in extreme cases, total failure after a period of successful operation. Although error detection and correction are almost always considered for highly sensitive and susceptible applications such as those in space, for other, more general-purpose applications they are often overlooked. In this paper, we present a parallel matrix multiplication accelerator running in hardware on the Xilinx Zynq system-on-chip platform, along with `bolt-on' logic for detecting, locating and avoiding faults within its datapath. Designs of various sizes are compared with respect to resource overhead and performance impact. Our largest-implemented fault-tolerant accelerator was found to consume 17.3% more area, run at a 3.95% lower frequency and incur an 18.8% execution time penalty over its equivalent fault-susceptible design during fault-free operation.","PeriodicalId":344469,"journal":{"name":"2013 International Conference on Field-Programmable Technology (FPT)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2013.6718389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

While we reap the benefits of process scaling in terms of transistor density and switching speed, consideration must be given to the negative effects it causes: increased variation, degradation and fault susceptibility. Above device level, such phenomena and the faults they induce can lead to reduced yield, decreased system reliability and, in extreme cases, total failure after a period of successful operation. Although error detection and correction are almost always considered for highly sensitive and susceptible applications such as those in space, for other, more general-purpose applications they are often overlooked. In this paper, we present a parallel matrix multiplication accelerator running in hardware on the Xilinx Zynq system-on-chip platform, along with `bolt-on' logic for detecting, locating and avoiding faults within its datapath. Designs of various sizes are compared with respect to resource overhead and performance impact. Our largest-implemented fault-tolerant accelerator was found to consume 17.3% more area, run at a 3.95% lower frequency and incur an 18.8% execution time penalty over its equivalent fault-susceptible design during fault-free operation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并行加速器的数据路径容错
虽然我们在晶体管密度和开关速度方面获得了工艺缩放的好处,但必须考虑到它造成的负面影响:增加变化,退化和故障敏感性。在设备层面上,这种现象及其引发的故障会导致产量下降、系统可靠性下降,在极端情况下,在成功运行一段时间后,会导致完全故障。虽然错误检测和纠正几乎总是考虑到高度敏感和易受影响的应用程序,如空间中的应用程序,但对于其他更通用的应用程序,它们往往被忽视。在本文中,我们提出了一个并行矩阵乘法加速器,运行在赛灵思Zynq片上系统平台的硬件上,以及用于检测,定位和避免其数据路径中的故障的“插口”逻辑。在资源开销和性能影响方面比较不同大小的设计。我们实现的最大的容错加速器在无故障运行期间,比同等的故障敏感设计多消耗17.3%的面积,运行频率低3.95%,执行时间减少18.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and optimization of heterogeneous tree-based FPGA using 3D technology Mobile GPU shader processor based on non-blocking Coarse Grained Reconfigurable Arrays architecture An FPGA-cluster-accelerated match engine for content-based image retrieval A non-intrusive portable fault injection framework to assess reliability of FPGA-based designs Quantum FPGA architecture design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1