{"title":"Inverse Differential Quadrature Method for 3d Static Analysis of Composite Beam Structures","authors":"S. O. Ojo, C. Luan, Trinh, P. M. Weaver","doi":"10.23967/composites.2021.099","DOIUrl":null,"url":null,"abstract":"Modelling of laminated structures requires adequate computational frameworks which can accurately estimate displacement and stress fields resulting from systems of high-order partial differential equations [1]. The recently developed inverse differential quadrature method (iDQM) [2] shows promising outcomes for obtaining solution of high-order systems of equation. In this study, we perform static analysis of composite structures based on the theory of Unified Formulation (UF) and mixed methods, comprising of a combination of high-order Finite Element (FE) Method and the new iDQM. According to the theory of UF, a 3D structure is geometrically reconfigured by separating the kinematics governing the 2D cross-section from the 1D axial deformation. In this context, the so-called Serendipity Lagrange Element [3] is employed in a FE framework to capture the cross-sectional deformation with enhanced accuracy without the need for remeshing or loss of numerical stability. On the other hand, the deformation of the refined 1D structure is captured by a new iDQM-based beam element which is either characterised by approximation of derivatives of intermediate order (in a mixed iDQM framework) or highest derivatives (in a full iDQM framework) of the 1D displacement fields. By invoking plane strain and simple support conditions, FE-iDQM predictions of stresses for different lami-nate configurations show good agreement with Pagano’s exact solution and compare well with DQM solutions with the same level of discretisation as shown in Figure 1.","PeriodicalId":392595,"journal":{"name":"VIII Conference on Mechanical Response of Composites","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VIII Conference on Mechanical Response of Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/composites.2021.099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Modelling of laminated structures requires adequate computational frameworks which can accurately estimate displacement and stress fields resulting from systems of high-order partial differential equations [1]. The recently developed inverse differential quadrature method (iDQM) [2] shows promising outcomes for obtaining solution of high-order systems of equation. In this study, we perform static analysis of composite structures based on the theory of Unified Formulation (UF) and mixed methods, comprising of a combination of high-order Finite Element (FE) Method and the new iDQM. According to the theory of UF, a 3D structure is geometrically reconfigured by separating the kinematics governing the 2D cross-section from the 1D axial deformation. In this context, the so-called Serendipity Lagrange Element [3] is employed in a FE framework to capture the cross-sectional deformation with enhanced accuracy without the need for remeshing or loss of numerical stability. On the other hand, the deformation of the refined 1D structure is captured by a new iDQM-based beam element which is either characterised by approximation of derivatives of intermediate order (in a mixed iDQM framework) or highest derivatives (in a full iDQM framework) of the 1D displacement fields. By invoking plane strain and simple support conditions, FE-iDQM predictions of stresses for different lami-nate configurations show good agreement with Pagano’s exact solution and compare well with DQM solutions with the same level of discretisation as shown in Figure 1.