T. Bhatta, P. Maharjan, Kumar Shrestha, Sang Hyun Lee, Chani Park, J. Park
{"title":"Self-sustained Arbitrary Motion Sensing System for Wireless Autonomous Control Application","authors":"T. Bhatta, P. Maharjan, Kumar Shrestha, Sang Hyun Lee, Chani Park, J. Park","doi":"10.1109/PowerMEMS54003.2021.9658376","DOIUrl":null,"url":null,"abstract":"This work reports a high-performance and highly sensitive self-sustained arbitrary motion sensing system (SS-AMSS) by integrating energy harvesting and self-powered sensing on a novel 3D printed geometry. SS-AMSS consists of a spherical magnet rolling inside the hollow ellipsoid surrounded with six planar spiral coils for scavenging energy from multi-direction and four triboelectric nanogenerators (TENGs) are integrated for arbitrary motion detection. Unlike traditional TENGs that require external stimuli for periodic contact-separation, the custom fabricated PDMS/FeSiCr ferroelectric film acts as an actuating layer, thus simplifying the TENG operation. The electromagnetic generator can deliver a peak power of 187 mW at 275 Ω matching load under 6 Hz frequency. The self-powered sensors have excellent motion sensitivities for detecting various motion parameters along with linear (X, Y, and Z-axis) and rotational (pitch, roll, and yaw axis) conditions. Finally, the capability of SS-AMSS as a complete wireless self-powered motion sensing system has been demonstrated.","PeriodicalId":165158,"journal":{"name":"2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerMEMS54003.2021.9658376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This work reports a high-performance and highly sensitive self-sustained arbitrary motion sensing system (SS-AMSS) by integrating energy harvesting and self-powered sensing on a novel 3D printed geometry. SS-AMSS consists of a spherical magnet rolling inside the hollow ellipsoid surrounded with six planar spiral coils for scavenging energy from multi-direction and four triboelectric nanogenerators (TENGs) are integrated for arbitrary motion detection. Unlike traditional TENGs that require external stimuli for periodic contact-separation, the custom fabricated PDMS/FeSiCr ferroelectric film acts as an actuating layer, thus simplifying the TENG operation. The electromagnetic generator can deliver a peak power of 187 mW at 275 Ω matching load under 6 Hz frequency. The self-powered sensors have excellent motion sensitivities for detecting various motion parameters along with linear (X, Y, and Z-axis) and rotational (pitch, roll, and yaw axis) conditions. Finally, the capability of SS-AMSS as a complete wireless self-powered motion sensing system has been demonstrated.