Channel-Grouping Based Patch Swap For Arbitrary Style Transfer

Yan Zhu, Yi Niu, Fu Li, Chunbo Zou, Guangming Shi
{"title":"Channel-Grouping Based Patch Swap For Arbitrary Style Transfer","authors":"Yan Zhu, Yi Niu, Fu Li, Chunbo Zou, Guangming Shi","doi":"10.1109/ICIP40778.2020.9190962","DOIUrl":null,"url":null,"abstract":"The basic principle of the patch-matching based style transfer is to substitute the patches of the content image feature maps by the closest patches from the style image feature maps. Since the finite features harvested from one single aesthetic style image are inadequate to represent the rich textures of the content natural image, existing techniques treat the full-channel style feature patches as simple signal tensors and create new style feature patches via signal-level fusion. In this paper, we propose a channel-grouping based patch swap technique to group the style feature maps into surface and texture channels, and the new features are created by the combination of these two groups, which can be regarded as a semantic-level fusion of the raw style features. Experimental results demonstrate that the proposed method outperforms the existing techniques in providing more style-consistent textures while keeping the content fidelity.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9190962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The basic principle of the patch-matching based style transfer is to substitute the patches of the content image feature maps by the closest patches from the style image feature maps. Since the finite features harvested from one single aesthetic style image are inadequate to represent the rich textures of the content natural image, existing techniques treat the full-channel style feature patches as simple signal tensors and create new style feature patches via signal-level fusion. In this paper, we propose a channel-grouping based patch swap technique to group the style feature maps into surface and texture channels, and the new features are created by the combination of these two groups, which can be regarded as a semantic-level fusion of the raw style features. Experimental results demonstrate that the proposed method outperforms the existing techniques in providing more style-consistent textures while keeping the content fidelity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于通道分组的补丁交换,用于任意风格传输
基于补丁匹配的样式转移的基本原理是将内容图像特征映射的补丁替换为样式图像特征映射中最接近的补丁。由于从单个审美风格图像中获取的有限特征不足以表示内容自然图像的丰富纹理,现有技术将全通道风格特征块视为简单的信号张量,并通过信号级融合创建新的风格特征块。在本文中,我们提出了一种基于通道分组的补丁交换技术,将样式特征映射分组为表面通道和纹理通道,并将这两组组合生成新的特征,这可以看作是原始样式特征的语义级融合。实验结果表明,该方法在保持内容保真度的同时,提供了更一致风格的纹理,优于现有技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Adversarial Active Learning With Model Uncertainty For Image Classification Emotion Transformation Feature: Novel Feature For Deception Detection In Videos Object Segmentation In Electrical Impedance Tomography For Tactile Sensing A Syndrome-Based Autoencoder For Point Cloud Geometry Compression A Comparison Of Compressed Sensing And Dnn Based Reconstruction For Ghost Motion Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1