Kenan Ahmic, Anel Tahirbegović, A. Tahirovic, D. Watzenig, G. Stettinger
{"title":"Simulation Framework for Platooning based on Gazebo and SUMO","authors":"Kenan Ahmic, Anel Tahirbegović, A. Tahirovic, D. Watzenig, G. Stettinger","doi":"10.1109/CAVS51000.2020.9334630","DOIUrl":null,"url":null,"abstract":"The role of autonomous cooperative vehicles will undoubtedly be important in Intelligent Transportation Systems (ITS) to increase both the safety and the overall efficiency of a high traffic network system. An autonomous platooning provides one promising strategy for decreasing total fuel consumption of a fleet of vehicles and potential risk of accidents, especially during long-distance transportation. In this work, we provide a proof-of-concept for a simulation framework in which it is possible to simulate platoon and other multi-vehicle systems using realistic vehicle models within different traffic scenarios, which is based on ROS, Gazebo and SUMO. The framework enables an easy-to-use perception and control modules of the autonomous driving stack for a realistic vehicle models, while preserving a convenient setup of different high traffic platooning scenarios. Consequently, it provides a platooning design step for conducting reliable development analyses and a platform for comparisons of different platooning strategies. We illustrate the effectiveness of the proposed platooning framework through three typical scenarios using a distributed model predictive control scheme with a platoon consisted of Toyota Prius car models.","PeriodicalId":409507,"journal":{"name":"2020 IEEE 3rd Connected and Automated Vehicles Symposium (CAVS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 3rd Connected and Automated Vehicles Symposium (CAVS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAVS51000.2020.9334630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The role of autonomous cooperative vehicles will undoubtedly be important in Intelligent Transportation Systems (ITS) to increase both the safety and the overall efficiency of a high traffic network system. An autonomous platooning provides one promising strategy for decreasing total fuel consumption of a fleet of vehicles and potential risk of accidents, especially during long-distance transportation. In this work, we provide a proof-of-concept for a simulation framework in which it is possible to simulate platoon and other multi-vehicle systems using realistic vehicle models within different traffic scenarios, which is based on ROS, Gazebo and SUMO. The framework enables an easy-to-use perception and control modules of the autonomous driving stack for a realistic vehicle models, while preserving a convenient setup of different high traffic platooning scenarios. Consequently, it provides a platooning design step for conducting reliable development analyses and a platform for comparisons of different platooning strategies. We illustrate the effectiveness of the proposed platooning framework through three typical scenarios using a distributed model predictive control scheme with a platoon consisted of Toyota Prius car models.