Study on orthogonal tensor sparse neighborhood preserving embedding algorithm for dimension reduction

M. Qi, Hai Lu, Yanqiu Zhang, D. Lv, S. Yuan, Xin Xi
{"title":"Study on orthogonal tensor sparse neighborhood preserving embedding algorithm for dimension reduction","authors":"M. Qi, Hai Lu, Yanqiu Zhang, D. Lv, S. Yuan, Xin Xi","doi":"10.1109/WARTIA.2014.6976543","DOIUrl":null,"url":null,"abstract":"This paper proposes the orthogonal tensor sparse neighborhood preserving embedding algorithm (OTSNPE) for dimension reduction of the high-dimensional matrix data based on the bag of visual word and in combination with the sparse representation. OTSNPE applies sparse coding to local characteristic quantification of data through completion of within-class sparse representation and preserves the supervised local geometrical information effectively. Finally, the experimental result of the real high-dimensional matrix data set verifies the effectiveness of the algorithm.","PeriodicalId":288854,"journal":{"name":"2014 IEEE Workshop on Advanced Research and Technology in Industry Applications (WARTIA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Workshop on Advanced Research and Technology in Industry Applications (WARTIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WARTIA.2014.6976543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes the orthogonal tensor sparse neighborhood preserving embedding algorithm (OTSNPE) for dimension reduction of the high-dimensional matrix data based on the bag of visual word and in combination with the sparse representation. OTSNPE applies sparse coding to local characteristic quantification of data through completion of within-class sparse representation and preserves the supervised local geometrical information effectively. Finally, the experimental result of the real high-dimensional matrix data set verifies the effectiveness of the algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
正交张量稀疏邻域保持嵌入降维算法研究
针对高维矩阵数据的降维问题,提出了基于视觉词包并结合稀疏表示的正交张量稀疏邻域保持嵌入算法(OTSNPE)。OTSNPE通过完成类内稀疏表示,将稀疏编码应用于数据的局部特征量化,有效地保留了有监督的局部几何信息。最后,通过实际高维矩阵数据集的实验结果验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hospital digital library based on cloud computing Design and actualization of management system in sports teaching A topology control algorithm for ribbon wireless sensor network From the user experience to optimization design in App development process Research on communication network architecture of energy internet based on SDN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1