Uneven Background Extraction And Segmentation Of Good, Normal And Bad Quality Fingerprint Images

S. Jambhorkar, S. Gornale, V. Humbe, R. Manza, K V Kale
{"title":"Uneven Background Extraction And Segmentation Of Good, Normal And Bad Quality Fingerprint Images","authors":"S. Jambhorkar, S. Gornale, V. Humbe, R. Manza, K V Kale","doi":"10.1109/ADCOM.2006.4289887","DOIUrl":null,"url":null,"abstract":"In this paper, we have considered a problem of uneven background extraction and segmentation of good, normal and bad quality fingerprint images, though we propose an algorithm based on morphological transformations. Our result shows that the proposed algorithm can successfully extract the background of good, normal and bad quality images of fingerprint and well segment the foreground area. The algorithm has been tested and executed on FVC2002 database and the performance of proposed algorithm is evaluated through subjective and objective quality measures. This algorithm gives good and promising result and found suitable to remove superfluous information without affecting the structure of fingerprint image as well as reduces the storage space for the resultant image upto 77%. Our results will be useful for precise feature extraction in automatic fingerprint recognition system.","PeriodicalId":296627,"journal":{"name":"2006 International Conference on Advanced Computing and Communications","volume":"744 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Advanced Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ADCOM.2006.4289887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we have considered a problem of uneven background extraction and segmentation of good, normal and bad quality fingerprint images, though we propose an algorithm based on morphological transformations. Our result shows that the proposed algorithm can successfully extract the background of good, normal and bad quality images of fingerprint and well segment the foreground area. The algorithm has been tested and executed on FVC2002 database and the performance of proposed algorithm is evaluated through subjective and objective quality measures. This algorithm gives good and promising result and found suitable to remove superfluous information without affecting the structure of fingerprint image as well as reduces the storage space for the resultant image upto 77%. Our results will be useful for precise feature extraction in automatic fingerprint recognition system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优质、正常和劣质指纹图像的不均匀背景提取与分割
本文提出了一种基于形态学变换的指纹图像提取和分割算法,研究了优质、正常和劣质指纹图像的背景不均匀问题。实验结果表明,该算法能较好地提取出质量好的、正常的和质量差的指纹图像的背景,并能很好地分割出前景区域。该算法在FVC2002数据库上进行了测试和执行,并通过主观和客观质量指标对算法的性能进行了评价。该算法能够在不影响指纹图像结构的情况下去除多余信息,并将生成图像的存储空间减少了77%。研究结果将为指纹自动识别系统的精确特征提取提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message Integrity in the World Wide Web: Use of Nested Hash Function and a Fast Stream Cipher Feature Extraction Learning for Stereovision Based Robot Navigation System Semantics for a Distributed Programming Language Using SACS and Weakest Pre-Conditions On Evaluating Obfuscatory Strength of Alias-based Transforms using Static Analysis A Multi-Algorithmic Face Recognition System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1