Planning Landscape Analysis for Self-Adaptive Systems

Tao Chen
{"title":"Planning Landscape Analysis for Self-Adaptive Systems","authors":"Tao Chen","doi":"10.1145/3524844.3528060","DOIUrl":null,"url":null,"abstract":"To assure performance on the fly, planning is arguably one of the most important steps for self-adaptive systems (SASs), especially when they are highly configurable with a daunting number of adaptation options. However, there has been little understanding of the planning landscape or ways by which it can be analyzed. This inevitably creates barriers to the design of better and tailored planners for SASs. In this paper, we showcase how the planning landscapes of SASs can be quantified and reasoned, particularly with respect to the different environments. By studying four diverse real-world SASs and 14 environments, we found that (1) the SAS planning landscapes often provide strong guidance to the planner, but their ruggedness and multi-modality can be the major obstacle; (2) the extents of guidance and number of global/local optima are sensitive to the changing environment, but not the ruggedness of the surface; (3) the local optima are often closer to the global optimum than other random points; and (4) there are considerable (and useful) overlaps on the global/local optima between landscapes under different environments. We then discuss the potential implications to the future work of planner designs for SASs. CCS CONCEPTS • Software and its engineering $\\rightarrow$ Software performance; Software configuration management and version control systems.","PeriodicalId":227173,"journal":{"name":"2022 International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3524844.3528060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To assure performance on the fly, planning is arguably one of the most important steps for self-adaptive systems (SASs), especially when they are highly configurable with a daunting number of adaptation options. However, there has been little understanding of the planning landscape or ways by which it can be analyzed. This inevitably creates barriers to the design of better and tailored planners for SASs. In this paper, we showcase how the planning landscapes of SASs can be quantified and reasoned, particularly with respect to the different environments. By studying four diverse real-world SASs and 14 environments, we found that (1) the SAS planning landscapes often provide strong guidance to the planner, but their ruggedness and multi-modality can be the major obstacle; (2) the extents of guidance and number of global/local optima are sensitive to the changing environment, but not the ruggedness of the surface; (3) the local optima are often closer to the global optimum than other random points; and (4) there are considerable (and useful) overlaps on the global/local optima between landscapes under different environments. We then discuss the potential implications to the future work of planner designs for SASs. CCS CONCEPTS • Software and its engineering $\rightarrow$ Software performance; Software configuration management and version control systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应系统的规划景观分析
为了确保动态性能,规划可以说是自适应系统(SASs)最重要的步骤之一,特别是当它们具有令人生畏的适应性选项的高度可配置性时。然而,人们对规划景观或分析规划景观的方法了解甚少。这不可避免地会给为SASs设计更好的、量身定制的规划师带来障碍。在本文中,我们展示了如何量化和推理SASs的规划景观,特别是关于不同的环境。研究结果表明:(1)SAS规划景观对规划者具有较强的指导作用,但其粗劣性和多模态性可能成为主要障碍;(2)引导范围和全局/局部最优数对环境变化较为敏感,但对地形的粗糙度不敏感;(3)局部最优点往往比其他随机点更接近全局最优点;(4)在不同环境下,景观之间的全局/局部最优值存在相当大的(且有用的)重叠。然后,我们讨论了SASs规划器设计对未来工作的潜在影响。CCS CONCEPTS•软件及其工程$\右划$软件性能;软件配置管理和版本控制系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Self-Adaptive Peer-to-Peer Monitoring for Fog Environments Self-adaptive Testing in the Field: Are We There Yet? From Systems to Ecosystems: Rethinking Adaptive Safety Taming Model Uncertainty in Self-adaptive Systems Using Bayesian Model Averaging Emergent Web Server: An Exemplar to Explore Online Learning in Compositional Self-Adaptive Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1