Motion Interaction Field for Accident Detection in Traffic Surveillance Video

Kimin Yun, Hawook Jeong, K. M. Yi, S. Kim, J. Choi
{"title":"Motion Interaction Field for Accident Detection in Traffic Surveillance Video","authors":"Kimin Yun, Hawook Jeong, K. M. Yi, S. Kim, J. Choi","doi":"10.1109/ICPR.2014.528","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method for modeling of interaction among multiple moving objects to detect traffic accidents. The proposed method to model object interactions is motivated by the motion of water waves responding to moving objects on water surface. The shape of the water surface is modeled in a field form using Gaussian kernels, which is referred to as the Motion Interaction Field (MIF). By utilizing the symmetric properties of the MIF, we detect and localize traffic accidents without solving complex vehicle tracking problems. Experimental results show that our method outperforms the existing works in detecting and localizing traffic accidents.","PeriodicalId":142159,"journal":{"name":"2014 22nd International Conference on Pattern Recognition","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2014.528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

This paper presents a novel method for modeling of interaction among multiple moving objects to detect traffic accidents. The proposed method to model object interactions is motivated by the motion of water waves responding to moving objects on water surface. The shape of the water surface is modeled in a field form using Gaussian kernels, which is referred to as the Motion Interaction Field (MIF). By utilizing the symmetric properties of the MIF, we detect and localize traffic accidents without solving complex vehicle tracking problems. Experimental results show that our method outperforms the existing works in detecting and localizing traffic accidents.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
交通监控视频中事故检测的运动交互场
提出了一种基于多运动物体相互作用建模的交通事故检测方法。所提出的模拟物体相互作用的方法是由水波对水面上运动物体的响应运动驱动的。水面的形状用高斯核以场的形式建模,称为运动相互作用场(MIF)。利用MIF的对称特性,无需解决复杂的车辆跟踪问题,即可检测和定位交通事故。实验结果表明,该方法在交通事故检测和定位方面优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-Time Tracking via Deformable Structure Regression Learning Traffic Camera Anomaly Detection Velocity-Based Multiple Change-Point Inference for Unsupervised Segmentation of Human Movement Behavior Volume Reconstruction for MRI Anomaly Detection through Spatio-temporal Context Modeling in Crowded Scenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1