Adrian Diaz Fortich, Victor Dominguez, Yonghua Wu, M. Arend, D. V. Vladutescu, B. Gross, F. Moshary
{"title":"Lidar application to monitoring emissions and transport of particulate pollution in urban environments with high temporal and spatial resolution","authors":"Adrian Diaz Fortich, Victor Dominguez, Yonghua Wu, M. Arend, D. V. Vladutescu, B. Gross, F. Moshary","doi":"10.1117/12.2324848","DOIUrl":null,"url":null,"abstract":"Attainment of National Ambient Air Quality Standard-NAAQS for exposure limits to air pollutants is of great concern to State and Local agencies and communities in the United State because of potential health impacts. This is particularly important and challenging in urban areas because of high population densities and complex terrain. Exceedances of NAAQS requires states to develop implementation plans to address them and as such, studying the horizontal and vertical distribution and mixing of pollutants is key to understanding their transport and evolution. In this study, vertical and scanning horizontal lidar measurements together with in situ observations from particulate matter and trace gas analyzers from state air quality networks are used to shed light on mechanisms that impact movement of aerosol, including emissions from power generating stations at periods of high electricity demand.","PeriodicalId":370971,"journal":{"name":"Asia-Pacific Remote Sensing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2324848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Attainment of National Ambient Air Quality Standard-NAAQS for exposure limits to air pollutants is of great concern to State and Local agencies and communities in the United State because of potential health impacts. This is particularly important and challenging in urban areas because of high population densities and complex terrain. Exceedances of NAAQS requires states to develop implementation plans to address them and as such, studying the horizontal and vertical distribution and mixing of pollutants is key to understanding their transport and evolution. In this study, vertical and scanning horizontal lidar measurements together with in situ observations from particulate matter and trace gas analyzers from state air quality networks are used to shed light on mechanisms that impact movement of aerosol, including emissions from power generating stations at periods of high electricity demand.