A Reinforcement Learning Methodology for The Search of SRAM CIM-based Accelerator Configuration

Bo-Xi Lai, Shih-Hsu Huang, Hsu-Yu Kao
{"title":"A Reinforcement Learning Methodology for The Search of SRAM CIM-based Accelerator Configuration","authors":"Bo-Xi Lai, Shih-Hsu Huang, Hsu-Yu Kao","doi":"10.1109/ICCE-Taiwan55306.2022.9869149","DOIUrl":null,"url":null,"abstract":"Computing-in-memories (CIM) is recognized as a useful design technique for eliminating the Von Neumann bottleneck. However, there is a need for circuit designers to determine the configuration (i.e., design parameters) of CIM-based accelerators. Note that the configuration has influences on circuit area, throughput, and energy efficiency. In this paper, we focus on the SRAM CIM-based accelerator design. A reinforcement learning methodology is proposed to assist circuit designers to find the most suitable configuration. Experiment data show that the proposed methodology works well in practice.","PeriodicalId":164671,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics - Taiwan","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Computing-in-memories (CIM) is recognized as a useful design technique for eliminating the Von Neumann bottleneck. However, there is a need for circuit designers to determine the configuration (i.e., design parameters) of CIM-based accelerators. Note that the configuration has influences on circuit area, throughput, and energy efficiency. In this paper, we focus on the SRAM CIM-based accelerator design. A reinforcement learning methodology is proposed to assist circuit designers to find the most suitable configuration. Experiment data show that the proposed methodology works well in practice.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于SRAM cim的加速器配置搜索的强化学习方法
存储器中计算(CIM)被认为是消除冯·诺依曼瓶颈的一种有用的设计技术。然而,电路设计人员需要确定基于cim的加速器的配置(即设计参数)。请注意,配置对电路面积、吞吐量和能源效率有影响。本文主要研究基于SRAM的加速器设计。提出了一种强化学习方法来帮助电路设计者找到最合适的配置。实验数据表明,该方法在实际应用中效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Thermal-Predicted Workload Movement with Three-Dimensional DRAM-RRAM Hybrid Memories for Convolutional Neural Network Applications Performance Evaluation of Fault-Tolerant Routing Methods Using Parallel Programs Down-Sampling Dark Channel Prior of Airlight Estimation for Low Complexity Image Dehazing Chip Design Image Confusion Applied to Industrial Defect Detection System On Multimodal Semantic Consistency Detection of News Articles with Image Caption Pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1