High-performance Full-atomistic Simulation of Optical Thin Films

F. Grigoriev, V. Sulimov, A. Tikhonravov
{"title":"High-performance Full-atomistic Simulation of Optical Thin Films","authors":"F. Grigoriev, V. Sulimov, A. Tikhonravov","doi":"10.14529/JSFI180325","DOIUrl":null,"url":null,"abstract":"The experimental study of the dependence of thin film properties on the deposition conditions may be still a great challenge. Today the progress in high performance computing allows one to perform the investigation of these dependencies on the atomistic level using the classical molecular dynamics (MD) simulation. In the present work the computational cost and efficiency of classical full-atomistic simulation of thin film deposition process using the Lonmonosov-2 supercomputer facilities is discussed. It is demonstrated that using 512 computational cores of the Lomonosov-2 supercomputer ensures the simulation of thin film cluster with technologically meaningful thickness of an optical film. Because of a relatively slow growth of the simulation time with the increase of film thickness we guess that simulations clusters with thicknesses that are several times higher than the currently achieved thicknesses about one hundred nanometers is quite realistic if the number of available computational cores will be increased up to several thousands.","PeriodicalId":338883,"journal":{"name":"Supercomput. Front. Innov.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supercomput. Front. Innov.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/JSFI180325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The experimental study of the dependence of thin film properties on the deposition conditions may be still a great challenge. Today the progress in high performance computing allows one to perform the investigation of these dependencies on the atomistic level using the classical molecular dynamics (MD) simulation. In the present work the computational cost and efficiency of classical full-atomistic simulation of thin film deposition process using the Lonmonosov-2 supercomputer facilities is discussed. It is demonstrated that using 512 computational cores of the Lomonosov-2 supercomputer ensures the simulation of thin film cluster with technologically meaningful thickness of an optical film. Because of a relatively slow growth of the simulation time with the increase of film thickness we guess that simulations clusters with thicknesses that are several times higher than the currently achieved thicknesses about one hundred nanometers is quite realistic if the number of available computational cores will be increased up to several thousands.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光学薄膜的高性能全原子模拟
沉积条件对薄膜性能影响的实验研究仍然是一个巨大的挑战。今天,高性能计算的进步使人们能够使用经典分子动力学(MD)模拟在原子水平上对这些依赖关系进行研究。本文讨论了利用lonmonsov -2超级计算机设备进行薄膜沉积过程经典全原子模拟的计算成本和效率。结果表明,使用Lomonosov-2超级计算机的512个计算核可以保证薄膜簇的模拟具有技术意义的光学薄膜厚度。由于随着膜厚的增加,模拟时间的增长相对缓慢,我们推测,如果可用的计算核心数量增加到几千个,那么厚度比目前达到的厚度(约100纳米)高几倍的模拟簇是相当现实的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Supercomputer-Based Modeling System for Short-Term Prediction of Urban Surface Air Quality River Routing in the INM RAS-MSU Land Surface Model: Numerical Scheme and Parallel Implementation on Hybrid Supercomputers Data Assimilation by Neural Network for Ocean Circulation: Parallel Implementation Multistage Iterative Method to Tackle Inverse Problems of Wave Tomography Machine Learning Approaches to Extreme Weather Events Forecast in Urban Areas: Challenges and Initial Results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1