{"title":"Communication requirements for Dynamic Wireless Power Transfer for battery electric vehicles","authors":"A. Gil, Pablo Sauras-Perez, J. Taiber","doi":"10.1109/IEVC.2014.7056176","DOIUrl":null,"url":null,"abstract":"Dynamic Wireless Power Transfer (WPT) is a developing technology which provides wireless extension of the power supply of an electric vehicle while it is in motion, allowing extending its range. Therefore, the communication between the roadside controller (RSC) and the onboard controller (OBC) needs to be wireless too. In order to support the deterministic behavior needed for WPT real-time control loops, the network needs to provide resource reservation for critical data streams via configuration, management, and/or protocol action, in addition to mobility. These characteristics cannot be addressed with the current networking solutions. Hence, a change in network design framework is required. This paper presents the characteristics of the communication system that need to be considered when designing WPT communication protocols and system architecture that supports realtime in motion control applications and highlights the path to standardization of protocols for communication for real-time control loops.","PeriodicalId":223794,"journal":{"name":"2014 IEEE International Electric Vehicle Conference (IEVC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Electric Vehicle Conference (IEVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEVC.2014.7056176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Dynamic Wireless Power Transfer (WPT) is a developing technology which provides wireless extension of the power supply of an electric vehicle while it is in motion, allowing extending its range. Therefore, the communication between the roadside controller (RSC) and the onboard controller (OBC) needs to be wireless too. In order to support the deterministic behavior needed for WPT real-time control loops, the network needs to provide resource reservation for critical data streams via configuration, management, and/or protocol action, in addition to mobility. These characteristics cannot be addressed with the current networking solutions. Hence, a change in network design framework is required. This paper presents the characteristics of the communication system that need to be considered when designing WPT communication protocols and system architecture that supports realtime in motion control applications and highlights the path to standardization of protocols for communication for real-time control loops.