Saransh Gupta, M. Imani, Joonseop Sim, Andrew Huang, Fan Wu, M. Najafi, T. Simunic
{"title":"SCRIMP: A General Stochastic Computing Architecture using ReRAM in-Memory Processing","authors":"Saransh Gupta, M. Imani, Joonseop Sim, Andrew Huang, Fan Wu, M. Najafi, T. Simunic","doi":"10.23919/DATE48585.2020.9116338","DOIUrl":null,"url":null,"abstract":"Stochastic computing (SC) reduces the complexity of computation by representing numbers with long independent bit-streams. However, increasing performance in SC comes with increase in area and loss in accuracy. Processing in memory (PIM) with non-volatile memories (NVMs) computes data inplace, while having high memory density and supporting bitparallel operations with low energy. In this paper, we propose SCRIMP for stochastic computing acceleration with resistive RAM (ReRAM) in-memory processing, which enables SC in memory. SCRIMP can be used for a wide range of applications. It supports all SC encodings and operations in memory. It maximizes the performance and energy efficiency of implementing SC by introducing novel in-memory parallel stochastic number generation and efficient implication-based logic in memory. To show the efficiency of our stochastic architecture, we implement image processing on the proposed hardware.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Stochastic computing (SC) reduces the complexity of computation by representing numbers with long independent bit-streams. However, increasing performance in SC comes with increase in area and loss in accuracy. Processing in memory (PIM) with non-volatile memories (NVMs) computes data inplace, while having high memory density and supporting bitparallel operations with low energy. In this paper, we propose SCRIMP for stochastic computing acceleration with resistive RAM (ReRAM) in-memory processing, which enables SC in memory. SCRIMP can be used for a wide range of applications. It supports all SC encodings and operations in memory. It maximizes the performance and energy efficiency of implementing SC by introducing novel in-memory parallel stochastic number generation and efficient implication-based logic in memory. To show the efficiency of our stochastic architecture, we implement image processing on the proposed hardware.