SCRIMP: A General Stochastic Computing Architecture using ReRAM in-Memory Processing

Saransh Gupta, M. Imani, Joonseop Sim, Andrew Huang, Fan Wu, M. Najafi, T. Simunic
{"title":"SCRIMP: A General Stochastic Computing Architecture using ReRAM in-Memory Processing","authors":"Saransh Gupta, M. Imani, Joonseop Sim, Andrew Huang, Fan Wu, M. Najafi, T. Simunic","doi":"10.23919/DATE48585.2020.9116338","DOIUrl":null,"url":null,"abstract":"Stochastic computing (SC) reduces the complexity of computation by representing numbers with long independent bit-streams. However, increasing performance in SC comes with increase in area and loss in accuracy. Processing in memory (PIM) with non-volatile memories (NVMs) computes data inplace, while having high memory density and supporting bitparallel operations with low energy. In this paper, we propose SCRIMP for stochastic computing acceleration with resistive RAM (ReRAM) in-memory processing, which enables SC in memory. SCRIMP can be used for a wide range of applications. It supports all SC encodings and operations in memory. It maximizes the performance and energy efficiency of implementing SC by introducing novel in-memory parallel stochastic number generation and efficient implication-based logic in memory. To show the efficiency of our stochastic architecture, we implement image processing on the proposed hardware.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Stochastic computing (SC) reduces the complexity of computation by representing numbers with long independent bit-streams. However, increasing performance in SC comes with increase in area and loss in accuracy. Processing in memory (PIM) with non-volatile memories (NVMs) computes data inplace, while having high memory density and supporting bitparallel operations with low energy. In this paper, we propose SCRIMP for stochastic computing acceleration with resistive RAM (ReRAM) in-memory processing, which enables SC in memory. SCRIMP can be used for a wide range of applications. It supports all SC encodings and operations in memory. It maximizes the performance and energy efficiency of implementing SC by introducing novel in-memory parallel stochastic number generation and efficient implication-based logic in memory. To show the efficiency of our stochastic architecture, we implement image processing on the proposed hardware.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SCRIMP:一种使用ReRAM在内存中处理的通用随机计算架构
随机计算(SC)通过用长独立的比特流表示数字来降低计算的复杂性。然而,SC性能的提高伴随着面积的增加和精度的降低。使用非易失性存储器(nvm)的内存处理(PIM)可以就地计算数据,同时具有高内存密度并支持低能耗的位并行操作。在本文中,我们提出了随机计算加速的SCRIMP与内存中的电阻性RAM (ReRAM)处理,使SC在内存中。SCRIMP可用于广泛的应用。它支持内存中的所有SC编码和操作。它通过在内存中引入新颖的并行随机数字生成和高效的基于蕴涵的内存逻辑,最大限度地提高了SC的性能和能源效率。为了证明随机结构的有效性,我们在所提出的硬件上实现了图像处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-Memory Resistive RAM Implementation of Binarized Neural Networks for Medical Applications Towards Formal Verification of Optimized and Industrial Multipliers A 100KHz-1GHz Termination-dependent Human Body Communication Channel Measurement using Miniaturized Wearable Devices Computational SRAM Design Automation using Pushed-Rule Bitcells for Energy-Efficient Vector Processing PIM-Aligner: A Processing-in-MRAM Platform for Biological Sequence Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1