{"title":"Learning mixtures of arbitrary distributions over large discrete domains","authors":"Y. Rabani, L. Schulman, Chaitanya Swamy","doi":"10.1145/2554797.2554818","DOIUrl":null,"url":null,"abstract":"We give an algorithm for learning a mixture of unstructured distributions. This problem arises in various unsupervised learning scenarios, for example in learning topic models from a corpus of documents spanning several topics. We show how to learn the constituents of a mixture of k arbitrary distributions over a large discrete domain [n]={1, 2, ...,n} and the mixture weights, using O(n polylog n) samples. (In the topic-model learning setting, the mixture constituents correspond to the topic distributions.) This task is information-theoretically impossible for k > 1 under the usual sampling process from a mixture distribution. However, there are situations (such as the above-mentioned topic model case) in which each sample point consists of several observations from the same mixture constituent. This number of observations, which we call the \"sampling aperture\", is a crucial parameter of the problem. We obtain the first bounds for this mixture-learning problem without imposing any assumptions on the mixture constituents. We show that efficient learning is possible exactly at the information-theoretically least-possible aperture of 2k-1. Thus, we achieve near-optimal dependence on n and optimal aperture. While the sample-size required by our algorithm depends exponentially on k, we prove that such a dependence is unavoidable when one considers general mixtures. A sequence of tools contribute to the algorithm, such as concentration results for random matrices, dimension reduction, moment estimations, and sensitivity analysis.","PeriodicalId":382856,"journal":{"name":"Proceedings of the 5th conference on Innovations in theoretical computer science","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th conference on Innovations in theoretical computer science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2554797.2554818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
We give an algorithm for learning a mixture of unstructured distributions. This problem arises in various unsupervised learning scenarios, for example in learning topic models from a corpus of documents spanning several topics. We show how to learn the constituents of a mixture of k arbitrary distributions over a large discrete domain [n]={1, 2, ...,n} and the mixture weights, using O(n polylog n) samples. (In the topic-model learning setting, the mixture constituents correspond to the topic distributions.) This task is information-theoretically impossible for k > 1 under the usual sampling process from a mixture distribution. However, there are situations (such as the above-mentioned topic model case) in which each sample point consists of several observations from the same mixture constituent. This number of observations, which we call the "sampling aperture", is a crucial parameter of the problem. We obtain the first bounds for this mixture-learning problem without imposing any assumptions on the mixture constituents. We show that efficient learning is possible exactly at the information-theoretically least-possible aperture of 2k-1. Thus, we achieve near-optimal dependence on n and optimal aperture. While the sample-size required by our algorithm depends exponentially on k, we prove that such a dependence is unavoidable when one considers general mixtures. A sequence of tools contribute to the algorithm, such as concentration results for random matrices, dimension reduction, moment estimations, and sensitivity analysis.