Feature extraction from cancer images using local phase congruency: A reliable source of image descriptors

T. Szilágyi, M. Brady
{"title":"Feature extraction from cancer images using local phase congruency: A reliable source of image descriptors","authors":"T. Szilágyi, M. Brady","doi":"10.1109/ISBI.2009.5193281","DOIUrl":null,"url":null,"abstract":"The (semi-) automatic detection of significant (feature) points is a key task in in vivo assessment of cancer staging and progression. However, this is a challenging task due to the relatively poor signal-to-noise, limited resolution and variable intensity of medical images. We propose to use phase congruence (PC), the Morrone and Owens (1987) feature model, to extract local descriptors. We overcome the limitations of the currently accepted PC measure, estimate PC without using an image energy weighting factor. We show that: (i) relative phase values from a single scale are not equivalent to phase values from PC, and should not be used to assess local image structure; and (ii) our approach results in higher specificity to features of interest, and lower sensitivity to noise, as demonstrated in in vitro microscopy (e.g. tumour microvessels) and in vivo pre-clinical pancreatic cancer images.","PeriodicalId":272938,"journal":{"name":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"4 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2009.5193281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The (semi-) automatic detection of significant (feature) points is a key task in in vivo assessment of cancer staging and progression. However, this is a challenging task due to the relatively poor signal-to-noise, limited resolution and variable intensity of medical images. We propose to use phase congruence (PC), the Morrone and Owens (1987) feature model, to extract local descriptors. We overcome the limitations of the currently accepted PC measure, estimate PC without using an image energy weighting factor. We show that: (i) relative phase values from a single scale are not equivalent to phase values from PC, and should not be used to assess local image structure; and (ii) our approach results in higher specificity to features of interest, and lower sensitivity to noise, as demonstrated in in vitro microscopy (e.g. tumour microvessels) and in vivo pre-clinical pancreatic cancer images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用局部相位一致性的癌症图像特征提取:图像描述符的可靠来源
重要(特征)点的(半)自动检测是体内评估癌症分期和进展的关键任务。然而,由于医学图像相对较差的信噪比、有限的分辨率和可变的强度,这是一项具有挑战性的任务。我们建议使用相同余(PC),即Morrone和Owens(1987)的特征模型来提取局部描述符。我们克服了目前公认的PC测量的局限性,在不使用图像能量加权因子的情况下估计PC。我们发现:(i)来自单个尺度的相对相位值与来自PC的相位值不相等,不应用于评估局部图像结构;(ii)我们的方法对感兴趣的特征具有更高的特异性,对噪声的敏感性较低,正如体外显微镜(例如肿瘤微血管)和体内临床前胰腺癌图像所证明的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic alignment of stacks of filament data Analysis of nerve activity and optical signals from mouse brain stem to identify cells generating respiratory rhythms Segmentation and classification of triple negative breast cancers using DCE-MRI Improved registration for large electron microscopy images Special purpose 3-D reconstruction and restoration algorithms for electron microscopy of nanoscale objects and an enabling software toolkit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1